[1c0e03]: / man / create_model_lstm_cnn.Rd

Download this file

153 lines (113 with data), 5.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/create_model_lstm_cnn.R
\name{create_model_lstm_cnn}
\alias{create_model_lstm_cnn}
\title{Create LSTM/CNN network}
\usage{
create_model_lstm_cnn(
maxlen = 50,
dropout_lstm = 0,
recurrent_dropout_lstm = 0,
layer_lstm = NULL,
layer_dense = c(4),
dropout_dense = NULL,
kernel_size = NULL,
filters = NULL,
strides = NULL,
pool_size = NULL,
solver = "adam",
learning_rate = 0.001,
vocabulary_size = 4,
bidirectional = FALSE,
stateful = FALSE,
batch_size = NULL,
compile = TRUE,
padding = "same",
dilation_rate = NULL,
gap = FALSE,
use_bias = TRUE,
residual_block = FALSE,
residual_block_length = 1,
size_reduction_1Dconv = FALSE,
label_input = NULL,
zero_mask = FALSE,
label_smoothing = 0,
label_noise_matrix = NULL,
last_layer_activation = "softmax",
loss_fn = "categorical_crossentropy",
num_output_layers = 1,
auc_metric = FALSE,
f1_metric = FALSE,
bal_acc = FALSE,
verbose = TRUE,
batch_norm_momentum = 0.99,
model_seed = NULL,
mixed_precision = FALSE,
mirrored_strategy = NULL
)
}
\arguments{
\item{maxlen}{Length of predictor sequence.}
\item{dropout_lstm}{Fraction of the units to drop for inputs.}
\item{recurrent_dropout_lstm}{Fraction of the units to drop for recurrent state.}
\item{layer_lstm}{Number of cells per network layer. Can be a scalar or vector.}
\item{layer_dense}{Vector specifying number of neurons per dense layer after last LSTM or CNN layer (if no LSTM used).}
\item{dropout_dense}{Dropout rates between dense layers. No dropout if \code{NULL}.}
\item{kernel_size}{Size of 1d convolutional layers. For multiple layers, assign a vector. (e.g, \code{rep(3,2)} for two layers and kernel size 3)}
\item{filters}{Number of filters. For multiple layers, assign a vector.}
\item{strides}{Stride values. For multiple layers, assign a vector.}
\item{pool_size}{Integer, size of the max pooling windows. For multiple layers, assign a vector.}
\item{solver}{Optimization method, options are \verb{"adam", "adagrad", "rmsprop"} or \code{"sgd"}.}
\item{learning_rate}{Learning rate for optimizer.}
\item{vocabulary_size}{Number of unique character in vocabulary.}
\item{bidirectional}{Use bidirectional wrapper for lstm layers.}
\item{stateful}{Boolean. Whether to use stateful LSTM layer.}
\item{batch_size}{Number of samples that are used for one network update. Only used if \code{stateful = TRUE}.}
\item{compile}{Whether to compile the model.}
\item{padding}{Padding of CNN layers, e.g. \verb{"same", "valid"} or \code{"causal"}.}
\item{dilation_rate}{Integer, the dilation rate to use for dilated convolution.}
\item{gap}{Whether to apply global average pooling after last CNN layer.}
\item{use_bias}{Boolean. Usage of bias for CNN layers.}
\item{residual_block}{Boolean. If true, the residual connections are used in CNN. It is not used in the first convolutional layer.}
\item{residual_block_length}{Integer. Determines how many convolutional layers (or triplets when \code{size_reduction_1D_conv} is \code{TRUE}) exist}
\item{size_reduction_1Dconv}{Boolean. When \code{TRUE}, the number of filters in the convolutional layers is reduced to 1/4 of the number of filters of}
\item{label_input}{Integer or \code{NULL}. If not \code{NULL}, adds additional input layer of \code{label_input} size.}
\item{zero_mask}{Boolean, whether to apply zero masking before LSTM layer. Only used if model does not use any CNN layers.}
\item{label_smoothing}{Float in [0, 1]. If 0, no smoothing is applied. If > 0, loss between the predicted
labels and a smoothed version of the true labels, where the smoothing squeezes the labels towards 0.5.
The closer the argument is to 1 the more the labels get smoothed.}
\item{label_noise_matrix}{Matrix of label noises. Every row stands for one class and columns for percentage of labels in that class.
If first label contains 5 percent wrong labels and second label no noise, then
\code{label_noise_matrix <- matrix(c(0.95, 0.05, 0, 1), nrow = 2, byrow = TRUE )}}
\item{last_layer_activation}{Activation function of output layer(s). For example \code{"sigmoid"} or \code{"softmax"}.}
\item{loss_fn}{Either \code{"categorical_crossentropy"} or \code{"binary_crossentropy"}. If \code{label_noise_matrix} given, will use custom \code{"noisy_loss"}.}
\item{num_output_layers}{Number of output layers.}
\item{auc_metric}{Whether to add AUC metric.}
\item{f1_metric}{Whether to add F1 metric.}
\item{bal_acc}{Whether to add balanced accuracy.}
\item{verbose}{Boolean.}
\item{batch_norm_momentum}{Momentum for the moving mean and the moving variance.}
\item{model_seed}{Set seed for model parameters in tensorflow if not \code{NULL}.}
\item{mixed_precision}{Whether to use mixed precision (https://www.tensorflow.org/guide/mixed_precision).}
\item{mirrored_strategy}{Whether to use distributed mirrored strategy. If NULL, will use distributed mirrored strategy only if >1 GPU available.}
}
\value{
A keras model, stacks CNN, LSTM and dense layers.
}
\description{
Creates a network consisting of an arbitrary number of CNN, LSTM and dense layers.
Last layer is a dense layer.
}
\examples{
\dontshow{if (reticulate::py_module_available("tensorflow")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
create_model_lstm_cnn(
maxlen = 500,
vocabulary_size = 4,
kernel_size = c(8, 8, 8),
filters = c(16, 32, 64),
pool_size = c(3, 3, 3),
layer_lstm = c(32, 64),
layer_dense = c(128, 4),
learning_rate = 0.001)
\dontshow{\}) # examplesIf}
}