[1c0e03]: / R / custom_layers.R

Download this file

319 lines (269 with data), 10.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
#' Aggregation layer
#'
#' Aggregate output of time distribution representations using sum, max and/or mean function.
#'
#' @param load_r6 Whether to load the R6 layer class.
#' @param method At least one of the options, `"sum", "max"` or `"mean"`.
#' @param multi_in Whether to aggregate for a model with multiple inputs (and shared weights).
#' @examples
#'
#' \donttest{
#' library(keras)
#' l <- layer_aggregate_time_dist_wrapper()
#' }
#' @returns A keras layer applying pooling operation(s).
#' @export
layer_aggregate_time_dist_wrapper <- function(load_r6 = FALSE, method = "sum", multi_in = FALSE) {
layer_aggregate_time_dist <- keras::new_layer_class(
"layer_aggregate_time_dist",
initialize = function(method, multi_in=FALSE, ...) {
super$initialize(...)
self$method <- method
self$axis <- ifelse(multi_in, 0L, 1L)
self$multi_in <- multi_in
},
call = function(inputs, mask = NULL) {
out <- list()
if ("sum" %in% self$method) {
out <- c(out, tensorflow::tf$math$reduce_sum(inputs, axis = self$axis))
}
if ("mean" %in% self$method) {
out <- c(out, tensorflow::tf$math$reduce_mean(inputs, axis = self$axis))
}
if ("max" %in% self$method) {
out <- c(out, tensorflow::tf$math$reduce_max(inputs, axis = self$axis))
}
if (length(out) > 1) {
out <- tensorflow::tf$concat(out, axis = -1L)
} else {
out <- out[[1]]
}
out
},
get_config = function() {
config <- super$get_config()
config$method <- self$method
config$multi_in <- self$multi_in
config
}
)
if (load_r6) {
return(layer_aggregate_time_dist)
} else {
return(layer_aggregate_time_dist(method = method, multi_in = multi_in))
}
}
#' Layer for positional embedding
#'
#' Positional encoding layer with learned embedding.
#'
#' @inheritParams create_model_transformer
#' @param load_r6 Whether to load the R6 layer class.
#' @examples
#'
#' \donttest{
#' library(keras)
#' l <- layer_pos_embedding_wrapper()
#' }
#' @returns A keras layer implementing positional embedding.
#' @export
layer_pos_embedding_wrapper <- function(maxlen = 100, vocabulary_size = 4, load_r6 = FALSE, embed_dim = 64) {
layer_pos_embedding <- keras::new_layer_class(
"layer_pos_embedding",
initialize = function(maxlen=100, vocabulary_size=4, embed_dim=64, ...) {
super$initialize(...)
if (embed_dim != 0) {
self$token_emb <- tensorflow::tf$keras$layers$Embedding(input_dim = as.integer(vocabulary_size),
output_dim = as.integer(embed_dim))
self$position_embeddings <- tensorflow::tf$keras$layers$Embedding(input_dim = as.integer(maxlen),
output_dim = as.integer(embed_dim))
} else {
self$position_embeddings <- tensorflow::tf$keras$layers$Embedding(input_dim = as.integer(maxlen),
output_dim = as.integer(vocabulary_size))
}
self$embed_dim <- as.integer(embed_dim)
self$maxlen <- as.integer(maxlen)
self$vocabulary_size <- as.integer(vocabulary_size)
},
call = function(inputs) {
positions <- tensorflow::tf$range(self$maxlen, dtype = "int32")
embedded_positions <- self$position_embeddings(positions)
if (self$embed_dim != 0) inputs <- self$token_emb(inputs)
inputs + embedded_positions
},
get_config = function() {
config <- super$get_config()
config$maxlen <- self$maxlen
config$vocabulary_size <- self$vocabulary_size
config$embed_dim <- self$embed_dim
config
}
)
if (load_r6) {
return(layer_pos_embedding)
} else {
return(layer_pos_embedding(maxlen=maxlen, vocabulary_size=vocabulary_size, embed_dim=embed_dim))
}
}
#' Layer for positional encoding
#'
#' Positional encoding layer with sine/cosine matrix of different frequencies.
#'
#' @inheritParams create_model_transformer
#' @param load_r6 Whether to load the R6 layer class.
#' @examples
#'
#' \donttest{
#' library(keras)
#' l <- layer_pos_sinusoid_wrapper()
#' }
#' @returns A keras layer implementing positional encoding using sine/cosine waves.
#' @export
layer_pos_sinusoid_wrapper <- function(maxlen = 100, vocabulary_size = 4, n = 10000, load_r6 = FALSE, embed_dim = 64) {
layer_pos_sinusoid <- keras::new_layer_class(
"layer_pos_sinusoid",
initialize = function(maxlen, vocabulary_size, n, embed_dim, ...) {
super$initialize(...)
self$maxlen <- as.integer(maxlen)
self$vocabulary_size <- vocabulary_size
self$n <- as.integer(n)
self$pe_matrix <- positional_encoding(seq_len = maxlen,
d_model = ifelse(embed_dim == 0,
as.integer(vocabulary_size),
as.integer(embed_dim)),
n = n)
if (embed_dim != 0) {
self$token_emb <- tensorflow::tf$keras$layers$Embedding(input_dim = vocabulary_size, output_dim = as.integer(embed_dim))
}
self$embed_dim <- as.integer(embed_dim)
},
call = function(inputs) {
if (self$embed_dim != 0) {
inputs <- self$token_emb(inputs)
}
inputs + self$pe_matrix
},
get_config = function() {
config <- super$get_config()
config$maxlen <- self$maxlen
config$vocabulary_size <- self$vocabulary_size
config$n <- self$n
config$embed_dim <- self$embed_dim
config$pe_matrix <- self$pe_matrix
config
}
)
if (load_r6) {
return(layer_pos_sinusoid)
} else {
return(layer_pos_sinusoid(maxlen=maxlen, vocabulary_size=vocabulary_size, n=n,
embed_dim = embed_dim))
}
}
#' Transformer block
#'
#' Create transformer block. Consists of self attention, dense layers, layer normalization, recurrent connection and dropout.
#'
#' @inheritParams create_model_transformer
#' @param dropout_rate Rate to randomly drop out connections.
#' @param load_r6 Whether to return the layer class.
#' @examples
#'
#' \donttest{
#' library(keras)
#' l <- layer_transformer_block_wrapper()
#' }
#' @returns A keras layer implementing a transformer block.
#' @export
layer_transformer_block_wrapper <- function(num_heads = 2, head_size = 4, dropout_rate = 0, ff_dim = 64,
vocabulary_size = 4, load_r6 = FALSE, embed_dim = 64) {
layer_transformer_block <- keras::new_layer_class(
"layer_transformer_block",
initialize = function(num_heads=2, head_size=4, dropout_rate=0, ff_dim=64L, vocabulary_size=4, embed_dim=64, ...) {
super$initialize(...)
self$num_heads <- num_heads
self$head_size <- head_size
self$dropout_rate <- dropout_rate
self$ff_dim <- ff_dim
self$embed_dim <- as.integer(embed_dim)
self$vocabulary_size <- vocabulary_size
self$att <- tensorflow::tf$keras$layers$MultiHeadAttention(num_heads=as.integer(num_heads),
key_dim=as.integer(head_size))
self$ffn <- keras::keras_model_sequential() %>% keras::layer_dense(units=as.integer(ff_dim), activation="relu") %>%
keras::layer_dense(units=ifelse(embed_dim == 0, as.integer(vocabulary_size), as.integer(embed_dim)))
self$layernorm1 <- keras::layer_layer_normalization(epsilon=1e-6)
self$layernorm2 <- keras::layer_layer_normalization(epsilon=1e-6)
self$dropout1 <- keras::layer_dropout(rate=dropout_rate)
self$dropout2 <- keras::layer_dropout(rate=dropout_rate)
},
call = function(inputs) {
attn_output <- self$att(inputs, inputs, inputs)
attn_output <- self$dropout1(attn_output)
out1 <- self$layernorm1(inputs + attn_output)
ffn_output <- self$ffn(out1)
ffn_output <- self$dropout2(ffn_output)
seq_output <- self$layernorm2(out1 + ffn_output)
return(seq_output)
},
get_config = function() {
config <- super$get_config()
config$num_heads <- self$num_heads
config$head_size <- self$head_size
config$dropout_rate <- self$dropout_rate
config$ff_dim <- self$ff_dim
config$vocabulary_size <- self$vocabulary_size
config$embed_dim <- self$embed_dim
config
}
)
if (load_r6) {
return(layer_transformer_block)
} else {
return(layer_transformer_block(num_heads=num_heads,
head_size=head_size,
dropout_rate=dropout_rate,
vocabulary_size=vocabulary_size,
embed_dim=embed_dim,
ff_dim=ff_dim))
}
}
layer_cosine_sim_wrapper <- function(load_r6 = FALSE) {
layer_cosine_sim <- keras::new_layer_class(
"layer_cosine_sim",
initialize = function(...) {
super$initialize(...)
},
call = function(inputs) {
cosine_similarity(vects=inputs)
},
get_config = function() {
config <- super$get_config()
config
}
)
if (load_r6) {
return(layer_cosine_sim)
} else {
return(layer_cosine_sim())
}
}
layer_euc_dist_wrapper <- function(load_r6 = FALSE) {
layer_euc_dist <- keras::new_layer_class(
"layer_euc_dist",
initialize = function(...) {
super$initialize(...)
},
call = function(inputs) {
euclidean_distance(vects=inputs)
},
get_config = function() {
config <- super$get_config()
config
}
)
if (load_r6) {
return(layer_euc_dist)
} else {
return(layer_euc_dist())
}
}