[736116]: / docs / tutorial_html / integrated_gradient.html

Download this file

481 lines (447 with data), 63.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<meta name="description" content="deepG">
<title>Integrated Gradient • deepG</title>
<!-- favicons --><link rel="icon" type="image/png" sizes="16x16" href="../favicon-16x16.png">
<link rel="icon" type="image/png" sizes="32x32" href="../favicon-32x32.png">
<link rel="apple-touch-icon" type="image/png" sizes="180x180" href="../apple-touch-icon.png">
<link rel="apple-touch-icon" type="image/png" sizes="120x120" href="../apple-touch-icon-120x120.png">
<link rel="apple-touch-icon" type="image/png" sizes="76x76" href="../apple-touch-icon-76x76.png">
<link rel="apple-touch-icon" type="image/png" sizes="60x60" href="../apple-touch-icon-60x60.png">
<script src="../deps/jquery-3.6.0/jquery-3.6.0.min.js"></script><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link href="../deps/bootstrap-5.3.1/bootstrap.min.css" rel="stylesheet">
<script src="../deps/bootstrap-5.3.1/bootstrap.bundle.min.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous">
<!-- bootstrap-toc --><script src="https://cdn.jsdelivr.net/gh/afeld/bootstrap-toc@v1.0.1/dist/bootstrap-toc.min.js" integrity="sha256-4veVQbu7//Lk5TSmc7YV48MxtMy98e26cf5MrgZYnwo=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.11/clipboard.min.js" integrity="sha512-7O5pXpc0oCRrxk8RUfDYFgn0nO1t+jLuIOQdOMRp4APB7uZ4vSjspzp5y6YDtDs4VzUSTbWzBFZ/LKJhnyFOKw==" crossorigin="anonymous" referrerpolicy="no-referrer"></script><!-- search --><script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/6.4.6/fuse.js" integrity="sha512-zv6Ywkjyktsohkbp9bb45V6tEMoWhzFzXis+LrMehmJZZSys19Yxf1dopHx7WzIKxr5tK2dVcYmaCk2uqdjF4A==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/autocomplete.js/0.38.0/autocomplete.jquery.min.js" integrity="sha512-GU9ayf+66Xx2TmpxqJpliWbT5PiGYxpaG8rfnBEk1LL8l1KGkRShhngwdXK1UgqhAzWpZHSiYPc09/NwDQIGyg==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/mark.min.js" integrity="sha512-5CYOlHXGh6QpOFA/TeTylKLWfB3ftPsde7AnmhuitiTX4K5SqCLBeKro6sPS8ilsz1Q4NRx3v8Ko2IBiszzdww==" crossorigin="anonymous"></script><!-- pkgdown --><script src="../pkgdown.js"></script><meta property="og:title" content="Integrated Gradient">
<meta property="og:description" content="deepG">
<meta property="og:image" content="https://genomenet.github.io/deepG/logo.png">
<!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body>
<a href="#main" class="visually-hidden-focusable">Skip to contents</a>
<nav class="navbar fixed-top navbar-light navbar-expand-lg bg-light" data-bs-theme="light"><div class="container">
<a class="navbar-brand me-2" href="../index.html">deepG</a>
<small class="nav-text text-default me-auto" data-bs-toggle="tooltip" data-bs-placement="bottom" title="Released version">0.3.0</small>
<button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbar" aria-controls="navbar" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar" class="collapse navbar-collapse ms-3">
<ul class="navbar-nav me-auto">
<li class="nav-item">
<a class="nav-link" href="../reference/index.html">
<span class="fa fa fa fa-file-alt"></span>
Reference
</a>
</li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" data-bs-toggle="dropdown" role="button" aria-expanded="false" aria-haspopup="true" id="dropdown-notebooks">Notebooks</a>
<div class="dropdown-menu" aria-labelledby="dropdown-notebooks">
<a class="external-link dropdown-item" href="https://colab.research.google.com/drive/175jIdXcDcgPUvaBo2rH2Lupbpjnp5O7G?usp=sharing">deepG tutorial</a>
<a class="external-link dropdown-item" href="https://colab.research.google.com/drive/1Eolc0koMNM1zkuO4XyVM58ImeF1BpRiH?usp=sharing">Read-length level: Human contamination</a>
<a class="external-link dropdown-item" href="https://colab.research.google.com/drive/1yiXSwFafXpMLHaov9iBTQLIDZ6bK1zYX?usp=sharing">Locus level: CRISPR detection</a>
<a class="external-link dropdown-item" href="https://colab.research.google.com/drive/1G7bOFEX87cZNrM2tdRtTdkrZn5fM__g0?usp=sharing">Gene level: 16S rRNA detection</a>
<a class="external-link dropdown-item" href="https://colab.research.google.com/drive/1BCggL-tfQF136YeJ8cKKi-zoBEDMgkNh?usp=sharing">Genome level: Bacterial morphology (Sporulation)</a>
<a class="external-link dropdown-item" href="https://colab.research.google.com/drive/10xpRzGd3JeBAbqQYSCxzQUMctt01sx9D?usp=sharing">Full metagenome level: Colorectal cancer prediction</a>
<a class="external-link dropdown-item" href="https://colab.research.google.com/drive/1kyYK7IU7GSfdpDzO_a8U3_qD4i3zTu6w?usp=sharing">BERT with deepG</a>
</div>
</li>
<li class="active nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" data-bs-toggle="dropdown" role="button" aria-expanded="false" aria-haspopup="true" id="dropdown-tutorials">Tutorials</a>
<div class="dropdown-menu" aria-labelledby="dropdown-tutorials">
<a class="dropdown-item" href="../articles/getting_started.html">Getting Started</a>
<a class="dropdown-item" href="../articles/training_types.html">Training types</a>
<a class="dropdown-item" href="../articles/data_generator.html">Data generator</a>
<a class="dropdown-item" href="../articles/using_tb.html">Using tensorboard</a>
<a class="dropdown-item" href="../articles/integrated_gradient.html">Integrated Gradient</a>
</div>
</li>
</ul>
<form class="form-inline my-2 my-lg-0" role="search">
<input type="search" class="form-control me-sm-2" aria-label="Toggle navigation" name="search-input" data-search-index="../search.json" id="search-input" placeholder="Search for" autocomplete="off">
</form>
<ul class="navbar-nav">
<li class="nav-item">
<a class="external-link nav-link" href="https://github.com/GenomeNet/deepG/" aria-label="github">
<span class="fab fa fab fa-github fa-lg"></span>
</a>
</li>
</ul>
</div>
</div>
</nav><div class="container template-article">
<div class="row">
<main id="main" class="col-md-9"><div class="page-header">
<img src="../logo.png" class="logo" alt=""><h1>Integrated Gradient</h1>
<small class="dont-index">Source: <a href="https://github.com/GenomeNet/deepG/blob/HEAD/vignettes/integrated_gradient.Rmd" class="external-link"><code>vignettes/integrated_gradient.Rmd</code></a></small>
<div class="d-none name"><code>integrated_gradient.Rmd</code></div>
</div>
<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co"># devtools::install_github("GenomeNet/deepG")</span></span>
<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://github.com/GenomeNet/deepG" class="external-link">deepG</a></span><span class="op">)</span></span>
<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://magrittr.tidyverse.org" class="external-link">magrittr</a></span><span class="op">)</span></span>
<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://ggplot2.tidyverse.org" class="external-link">ggplot2</a></span><span class="op">)</span></span></code></pre></div>
<style type="text/css">
mark.in {
background-color: CornflowerBlue;
}
mark.out {
background-color: IndianRed;
}
</style>
<div class="section level2">
<h2 id="introduction">Introduction<a class="anchor" aria-label="anchor" href="#introduction"></a>
</h2>
<p>The <a href="https://arxiv.org/abs/1703.01365" class="external-link">Integrated
Gradient</a> (IG) method can be used to determine what parts of an input
sequence are important for the models decision. We start with training a
model that can differentiate sequences based on the GC content (as
described in the <a href="getting_started.html">Getting started
tutorial</a>).</p>
</div>
<div class="section level2">
<h2 id="model-training">Model Training<a class="anchor" aria-label="anchor" href="#model-training"></a>
</h2>
<p>We create two simple dummy training and validation data sets. Both
consist of random <tt>ACGT</tt> sequences but the first category has a
probability of 40% each for drawing <tt>G</tt> or <tt>C</tt> and the
second has equal probability for each nucleotide (first category has
around 80% <tt>GC</tt> content and second one around 50%).</p>
<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/Random.html" class="external-link">set.seed</a></span><span class="op">(</span><span class="fl">123</span><span class="op">)</span></span>
<span></span>
<span><span class="co"># Create data </span></span>
<span><span class="va">vocabulary</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"A"</span>, <span class="st">"C"</span>, <span class="st">"G"</span>, <span class="st">"T"</span><span class="op">)</span></span>
<span><span class="va">data_type</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"train_1"</span>, <span class="st">"train_2"</span>, <span class="st">"val_1"</span>, <span class="st">"val_2"</span><span class="op">)</span></span>
<span></span>
<span><span class="kw">for</span> <span class="op">(</span><span class="va">i</span> <span class="kw">in</span> <span class="fl">1</span><span class="op">:</span><span class="fu"><a href="https://rdrr.io/r/base/length.html" class="external-link">length</a></span><span class="op">(</span><span class="va">data_type</span><span class="op">)</span><span class="op">)</span> <span class="op">{</span></span>
<span> </span>
<span> <span class="va">temp_file</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/tempfile.html" class="external-link">tempfile</a></span><span class="op">(</span><span class="op">)</span></span>
<span> <span class="fu"><a href="https://rdrr.io/r/base/assign.html" class="external-link">assign</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/paste.html" class="external-link">paste0</a></span><span class="op">(</span><span class="va">data_type</span><span class="op">[</span><span class="va">i</span><span class="op">]</span>, <span class="st">"_dir"</span><span class="op">)</span>, <span class="va">temp_file</span><span class="op">)</span></span>
<span> <span class="fu"><a href="https://rdrr.io/r/base/files2.html" class="external-link">dir.create</a></span><span class="op">(</span><span class="va">temp_file</span><span class="op">)</span></span>
<span> </span>
<span> <span class="kw">if</span> <span class="op">(</span><span class="va">i</span> <span class="op"><a href="https://rdrr.io/r/base/Arithmetic.html" class="external-link">%%</a></span> <span class="fl">2</span> <span class="op">==</span> <span class="fl">1</span><span class="op">)</span> <span class="op">{</span></span>
<span> <span class="va">header</span> <span class="op">&lt;-</span> <span class="st">"label_1"</span></span>
<span> <span class="va">prob</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0.1</span>, <span class="fl">0.4</span>, <span class="fl">0.4</span>, <span class="fl">0.1</span><span class="op">)</span></span>
<span> <span class="op">}</span> <span class="kw">else</span> <span class="op">{</span></span>
<span> <span class="va">header</span> <span class="op">&lt;-</span> <span class="st">"label_2"</span></span>
<span> <span class="va">prob</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/rep.html" class="external-link">rep</a></span><span class="op">(</span><span class="fl">0.25</span>, <span class="fl">4</span><span class="op">)</span></span>
<span> <span class="op">}</span></span>
<span> <span class="va">fasta_name_start</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html" class="external-link">paste0</a></span><span class="op">(</span><span class="va">header</span>, <span class="st">"_"</span>, <span class="va">data_type</span><span class="op">[</span><span class="va">i</span><span class="op">]</span>, <span class="st">"file"</span><span class="op">)</span></span>
<span> </span>
<span> <span class="fu"><a href="../reference/create_dummy_data.html">create_dummy_data</a></span><span class="op">(</span>file_path <span class="op">=</span> <span class="va">temp_file</span>,</span>
<span> num_files <span class="op">=</span> <span class="fl">1</span>,</span>
<span> seq_length <span class="op">=</span> <span class="fl">20000</span>, </span>
<span> num_seq <span class="op">=</span> <span class="fl">1</span>,</span>
<span> header <span class="op">=</span> <span class="va">header</span>,</span>
<span> prob <span class="op">=</span> <span class="va">prob</span>,</span>
<span> fasta_name_start <span class="op">=</span> <span class="va">fasta_name_start</span>,</span>
<span> vocabulary <span class="op">=</span> <span class="va">vocabulary</span><span class="op">)</span></span>
<span> </span>
<span><span class="op">}</span></span>
<span></span>
<span><span class="co"># Create model</span></span>
<span><span class="va">maxlen</span> <span class="op">&lt;-</span> <span class="fl">50</span></span>
<span><span class="va">model</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/create_model_lstm_cnn.html">create_model_lstm_cnn</a></span><span class="op">(</span>maxlen <span class="op">=</span> <span class="va">maxlen</span>,</span>
<span> filters <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">8</span>, <span class="fl">16</span><span class="op">)</span>,</span>
<span> kernel_size <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">8</span>, <span class="fl">8</span><span class="op">)</span>,</span>
<span> pool_size <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">3</span>, <span class="fl">3</span><span class="op">)</span>,</span>
<span> layer_lstm <span class="op">=</span> <span class="fl">8</span>,</span>
<span> layer_dense <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">4</span>, <span class="fl">2</span><span class="op">)</span>,</span>
<span> model_seed <span class="op">=</span> <span class="fl">3</span><span class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## Model: "model"</span></span>
<span><span class="co">## _________________________________________________________________</span></span>
<span><span class="co">## Layer (type) Output Shape Param # </span></span>
<span><span class="co">## =================================================================</span></span>
<span><span class="co">## input_1 (InputLayer) [(None, 50, 4)] 0 </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## conv1d (Conv1D) (None, 50, 8) 264 </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## max_pooling1d (MaxPooling1 (None, 16, 8) 0 </span></span>
<span><span class="co">## D) </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## batch_normalization (Batch (None, 16, 8) 32 </span></span>
<span><span class="co">## Normalization) </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## conv1d_1 (Conv1D) (None, 16, 16) 1040 </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## batch_normalization_1 (Bat (None, 16, 16) 64 </span></span>
<span><span class="co">## chNormalization) </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## max_pooling1d_1 (MaxPoolin (None, 5, 16) 0 </span></span>
<span><span class="co">## g1D) </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## lstm (LSTM) (None, 8) 800 </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## dense (Dense) (None, 4) 36 </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## dense_1 (Dense) (None, 2) 10 </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## =================================================================</span></span>
<span><span class="co">## Total params: 2246 (8.77 KB)</span></span>
<span><span class="co">## Trainable params: 2198 (8.59 KB)</span></span>
<span><span class="co">## Non-trainable params: 48 (192.00 Byte)</span></span>
<span><span class="co">## _________________________________________________________________</span></span></code></pre>
<div class="sourceCode" id="cb4"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co"># Train model</span></span>
<span><span class="va">hist</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/train_model.html">train_model</a></span><span class="op">(</span><span class="va">model</span>,</span>
<span> train_type <span class="op">=</span> <span class="st">"label_folder"</span>,</span>
<span> run_name <span class="op">=</span> <span class="st">"gc_model_1"</span>,</span>
<span> path <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="va">train_1_dir</span>, <span class="va">train_2_dir</span><span class="op">)</span>,</span>
<span> path_val <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="va">val_1_dir</span>, <span class="va">val_2_dir</span><span class="op">)</span>,</span>
<span> epochs <span class="op">=</span> <span class="fl">6</span>, </span>
<span> batch_size <span class="op">=</span> <span class="fl">64</span>,</span>
<span> steps_per_epoch <span class="op">=</span> <span class="fl">50</span>, </span>
<span> step <span class="op">=</span> <span class="fl">50</span>, </span>
<span> vocabulary_label <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"high_gc"</span>, <span class="st">"equal_dist"</span><span class="op">)</span><span class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## Epoch 1/6</span></span>
<span><span class="co">## 1/50 [..............................] - ETA: 1:00 - loss: 0.7005 - acc: 0.3906 6/50 [==&gt;...........................] - ETA: 0s - loss: 0.6881 - acc: 0.5417 10/50 [=====&gt;........................] - ETA: 0s - loss: 0.6825 - acc: 0.578115/50 [========&gt;.....................] - ETA: 0s - loss: 0.6681 - acc: 0.676021/50 [===========&gt;..................] - ETA: 0s - loss: 0.6466 - acc: 0.746325/50 [==============&gt;...............] - ETA: 0s - loss: 0.6319 - acc: 0.777529/50 [================&gt;.............] - ETA: 0s - loss: 0.6159 - acc: 0.805034/50 [===================&gt;..........] - ETA: 0s - loss: 0.5983 - acc: 0.826738/50 [=====================&gt;........] - ETA: 0s - loss: 0.5831 - acc: 0.842543/50 [========================&gt;.....] - ETA: 0s - loss: 0.5637 - acc: 0.858347/50 [===========================&gt;..] - ETA: 0s - loss: 0.5501 - acc: 0.867450/50 [==============================] - ETA: 0s - loss: 0.5391 - acc: 0.874750/50 [==============================] - 2s 20ms/step - loss: 0.5391 - acc: 0.8747 - val_loss: 0.5296 - val_acc: 0.9578 - lr: 0.0010</span></span>
<span><span class="co">## Epoch 2/6</span></span>
<span><span class="co">## 1/50 [..............................] - ETA: 0s - loss: 0.3424 - acc: 0.9844 6/50 [==&gt;...........................] - ETA: 0s - loss: 0.3381 - acc: 0.981811/50 [=====&gt;........................] - ETA: 0s - loss: 0.3287 - acc: 0.984417/50 [=========&gt;....................] - ETA: 0s - loss: 0.3093 - acc: 0.985320/50 [===========&gt;..................] - ETA: 0s - loss: 0.3038 - acc: 0.985225/50 [==============&gt;...............] - ETA: 0s - loss: 0.2914 - acc: 0.986231/50 [=================&gt;............] - ETA: 0s - loss: 0.2775 - acc: 0.985936/50 [====================&gt;.........] - ETA: 0s - loss: 0.2672 - acc: 0.987039/50 [======================&gt;.......] - ETA: 0s - loss: 0.2604 - acc: 0.987242/50 [========================&gt;.....] - ETA: 0s - loss: 0.2541 - acc: 0.987746/50 [==========================&gt;...] - ETA: 0s - loss: 0.2471 - acc: 0.987849/50 [============================&gt;.] - ETA: 0s - loss: 0.2413 - acc: 0.988250/50 [==============================] - 1s 16ms/step - loss: 0.2392 - acc: 0.9884 - val_loss: 0.3314 - val_acc: 0.9406 - lr: 0.0010</span></span>
<span><span class="co">## Epoch 3/6</span></span>
<span><span class="co">## 1/50 [..............................] - ETA: 0s - loss: 0.1552 - acc: 0.9844 6/50 [==&gt;...........................] - ETA: 0s - loss: 0.1424 - acc: 0.992211/50 [=====&gt;........................] - ETA: 0s - loss: 0.1349 - acc: 0.994316/50 [========&gt;.....................] - ETA: 0s - loss: 0.1275 - acc: 0.995122/50 [============&gt;.................] - ETA: 0s - loss: 0.1222 - acc: 0.995026/50 [==============&gt;...............] - ETA: 0s - loss: 0.1183 - acc: 0.995232/50 [==================&gt;...........] - ETA: 0s - loss: 0.1130 - acc: 0.995136/50 [====================&gt;.........] - ETA: 0s - loss: 0.1090 - acc: 0.995741/50 [=======================&gt;......] - ETA: 0s - loss: 0.1045 - acc: 0.995846/50 [==========================&gt;...] - ETA: 0s - loss: 0.1011 - acc: 0.995650/50 [==============================] - 1s 14ms/step - loss: 0.0977 - acc: 0.9959 - val_loss: 0.1857 - val_acc: 0.9594 - lr: 0.0010</span></span>
<span><span class="co">## Epoch 4/6</span></span>
<span><span class="co">## 1/50 [..............................] - ETA: 0s - loss: 0.0734 - acc: 0.9844 7/50 [===&gt;..........................] - ETA: 0s - loss: 0.0624 - acc: 0.995511/50 [=====&gt;........................] - ETA: 0s - loss: 0.0580 - acc: 0.997217/50 [=========&gt;....................] - ETA: 0s - loss: 0.0545 - acc: 0.997223/50 [============&gt;.................] - ETA: 0s - loss: 0.0528 - acc: 0.997329/50 [================&gt;.............] - ETA: 0s - loss: 0.0503 - acc: 0.997335/50 [====================&gt;.........] - ETA: 0s - loss: 0.0488 - acc: 0.997340/50 [=======================&gt;......] - ETA: 0s - loss: 0.0468 - acc: 0.997746/50 [==========================&gt;...] - ETA: 0s - loss: 0.0454 - acc: 0.997650/50 [==============================] - 1s 14ms/step - loss: 0.0441 - acc: 0.9978 - val_loss: 0.1155 - val_acc: 0.9656 - lr: 0.0010</span></span>
<span><span class="co">## Epoch 5/6</span></span>
<span><span class="co">## 1/50 [..............................] - ETA: 0s - loss: 0.0293 - acc: 1.0000 7/50 [===&gt;..........................] - ETA: 0s - loss: 0.0305 - acc: 0.997811/50 [=====&gt;........................] - ETA: 0s - loss: 0.0288 - acc: 0.998616/50 [========&gt;.....................] - ETA: 0s - loss: 0.0272 - acc: 0.999021/50 [===========&gt;..................] - ETA: 0s - loss: 0.0266 - acc: 0.999325/50 [==============&gt;...............] - ETA: 0s - loss: 0.0258 - acc: 0.999431/50 [=================&gt;............] - ETA: 0s - loss: 0.0249 - acc: 0.999536/50 [====================&gt;.........] - ETA: 0s - loss: 0.0242 - acc: 0.999641/50 [=======================&gt;......] - ETA: 0s - loss: 0.0235 - acc: 0.999646/50 [==========================&gt;...] - ETA: 0s - loss: 0.0229 - acc: 0.999750/50 [==============================] - ETA: 0s - loss: 0.0224 - acc: 0.999750/50 [==============================] - 1s 16ms/step - loss: 0.0224 - acc: 0.9997 - val_loss: 0.0869 - val_acc: 0.9750 - lr: 0.0010</span></span>
<span><span class="co">## Epoch 6/6</span></span>
<span><span class="co">## 1/50 [..............................] - ETA: 0s - loss: 0.0164 - acc: 1.0000 7/50 [===&gt;..........................] - ETA: 0s - loss: 0.0161 - acc: 1.000011/50 [=====&gt;........................] - ETA: 0s - loss: 0.0159 - acc: 1.000016/50 [========&gt;.....................] - ETA: 0s - loss: 0.0154 - acc: 1.000022/50 [============&gt;.................] - ETA: 0s - loss: 0.0151 - acc: 1.000026/50 [==============&gt;...............] - ETA: 0s - loss: 0.0148 - acc: 1.000032/50 [==================&gt;...........] - ETA: 0s - loss: 0.0145 - acc: 1.000037/50 [=====================&gt;........] - ETA: 0s - loss: 0.0142 - acc: 1.000043/50 [========================&gt;.....] - ETA: 0s - loss: 0.0138 - acc: 1.000048/50 [===========================&gt;..] - ETA: 0s - loss: 0.0136 - acc: 1.000050/50 [==============================] - 1s 13ms/step - loss: 0.0135 - acc: 1.0000 - val_loss: 0.0858 - val_acc: 0.9766 - lr: 0.0010</span></span></code></pre>
<pre><code><span><span class="co">## Training done.</span></span></code></pre>
<div class="sourceCode" id="cb7"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">hist</span><span class="op">)</span></span></code></pre></div>
<p><img src="integrated_gradient_files/figure-html/unnamed-chunk-5-1.png" width="700"></p>
</div>
<div class="section level2">
<h2 id="integrated-gradient">Integrated Gradient<a class="anchor" aria-label="anchor" href="#integrated-gradient"></a>
</h2>
<p>We can try to visualize what parts of an input sequence is important
for the models decision, using Integrated Gradient. Let’s create a
sequence with a high GC content. We use same number of Cs as Gs and of
As as Ts.</p>
<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/Random.html" class="external-link">set.seed</a></span><span class="op">(</span><span class="fl">321</span><span class="op">)</span></span>
<span><span class="va">g_count</span> <span class="op">&lt;-</span> <span class="fl">17</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/stopifnot.html" class="external-link">stopifnot</a></span><span class="op">(</span><span class="va">g_count</span> <span class="op">&lt;</span> <span class="fl">25</span><span class="op">)</span></span>
<span><span class="va">a_count</span> <span class="op">&lt;-</span> <span class="op">(</span><span class="fl">50</span> <span class="op">-</span> <span class="op">(</span><span class="fl">2</span><span class="op">*</span><span class="va">g_count</span><span class="op">)</span><span class="op">)</span><span class="op">/</span><span class="fl">2</span> </span>
<span><span class="va">high_gc_seq</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/rep.html" class="external-link">rep</a></span><span class="op">(</span><span class="st">"G"</span>, <span class="va">g_count</span><span class="op">)</span>, <span class="fu"><a href="https://rdrr.io/r/base/rep.html" class="external-link">rep</a></span><span class="op">(</span><span class="st">"C"</span>, <span class="va">g_count</span><span class="op">)</span>, <span class="fu"><a href="https://rdrr.io/r/base/rep.html" class="external-link">rep</a></span><span class="op">(</span><span class="st">"A"</span>, <span class="va">a_count</span><span class="op">)</span>, <span class="fu"><a href="https://rdrr.io/r/base/rep.html" class="external-link">rep</a></span><span class="op">(</span><span class="st">"T"</span>, <span class="va">a_count</span><span class="op">)</span><span class="op">)</span></span>
<span><span class="va">high_gc_seq</span> <span class="op">&lt;-</span> <span class="va">high_gc_seq</span><span class="op">[</span><span class="fu"><a href="https://rdrr.io/r/base/sample.html" class="external-link">sample</a></span><span class="op">(</span><span class="va">maxlen</span><span class="op">)</span><span class="op">]</span> <span class="op"><a href="../reference/pipe.html">%&gt;%</a></span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html" class="external-link">paste</a></span><span class="op">(</span>collapse <span class="op">=</span> <span class="st">""</span><span class="op">)</span> <span class="co"># shuffle nt order</span></span>
<span><span class="va">high_gc_seq</span></span></code></pre></div>
<pre><code><span><span class="co">## [1] "TGCGCGAGCCCAGCTAAGCGGCCTCCTTAGGCTGCCGGCGGGATCAGCTA"</span></span></code></pre>
<p>We need to one-hot encode the sequence before applying Integrated
Gradient.</p>
<div class="sourceCode" id="cb10"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">high_gc_seq_one_hot</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/seq_encoding_label.html">seq_encoding_label</a></span><span class="op">(</span>char_sequence <span class="op">=</span> <span class="va">high_gc_seq</span>,</span>
<span> maxlen <span class="op">=</span> <span class="fl">50</span>,</span>
<span> start_ind <span class="op">=</span> <span class="fl">1</span>,</span>
<span> vocabulary <span class="op">=</span> <span class="va">vocabulary</span><span class="op">)</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/utils/head.html" class="external-link">head</a></span><span class="op">(</span><span class="va">high_gc_seq_one_hot</span><span class="op">[</span><span class="fl">1</span>,,<span class="op">]</span><span class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## [,1] [,2] [,3] [,4]</span></span>
<span><span class="co">## [1,] 0 0 0 1</span></span>
<span><span class="co">## [2,] 0 0 1 0</span></span>
<span><span class="co">## [3,] 0 1 0 0</span></span>
<span><span class="co">## [4,] 0 0 1 0</span></span>
<span><span class="co">## [5,] 0 1 0 0</span></span>
<span><span class="co">## [6,] 0 0 1 0</span></span></code></pre>
<p>Our model should be confident, this sequences belongs to the first
class</p>
<div class="sourceCode" id="cb12"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">pred</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/stats/predict.html" class="external-link">predict</a></span><span class="op">(</span><span class="va">model</span>, <span class="va">high_gc_seq_one_hot</span>, verbose <span class="op">=</span> <span class="fl">0</span><span class="op">)</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/colnames.html" class="external-link">colnames</a></span><span class="op">(</span><span class="va">pred</span><span class="op">)</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"high_gc"</span>, <span class="st">"equal_dist"</span><span class="op">)</span></span>
<span><span class="va">pred</span></span></code></pre></div>
<pre><code><span><span class="co">## high_gc equal_dist</span></span>
<span><span class="co">## [1,] 0.9657075 0.0342925</span></span></code></pre>
<p>We can visualize what parts where important for the prediction.</p>
<div class="sourceCode" id="cb14"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">ig</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/integrated_gradients.html">integrated_gradients</a></span><span class="op">(</span></span>
<span> input_seq <span class="op">=</span> <span class="va">high_gc_seq_one_hot</span>,</span>
<span> target_class_idx <span class="op">=</span> <span class="fl">1</span>,</span>
<span> model <span class="op">=</span> <span class="va">model</span><span class="op">)</span></span>
<span></span>
<span><span class="kw">if</span> <span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/ns-load.html" class="external-link">requireNamespace</a></span><span class="op">(</span><span class="st">"ComplexHeatmap"</span>, quietly <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span><span class="op">)</span> <span class="op">{</span></span>
<span> <span class="fu"><a href="../reference/heatmaps_integrated_grad.html">heatmaps_integrated_grad</a></span><span class="op">(</span>integrated_grads <span class="op">=</span> <span class="va">ig</span>,</span>
<span> input_seq <span class="op">=</span> <span class="va">high_gc_seq_one_hot</span><span class="op">)</span></span>
<span><span class="op">}</span> <span class="kw">else</span> <span class="op">{</span></span>
<span> <span class="fu"><a href="https://rdrr.io/r/base/message.html" class="external-link">message</a></span><span class="op">(</span><span class="st">"Skipping ComplexHeatmap-related code because the package is not installed."</span><span class="op">)</span></span>
<span><span class="op">}</span></span></code></pre></div>
<pre><code><span><span class="co">## [[1]]</span></span></code></pre>
<p><img src="integrated_gradient_files/figure-html/unnamed-chunk-9-1.png" width="700"></p>
<p>We may test how our models prediction changes if we exchange certain
nucleotides in the input sequence. First, we look for the positions with
the smallest IG score.</p>
<div class="sourceCode" id="cb16"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">ig</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/array.html" class="external-link">as.array</a></span><span class="op">(</span><span class="va">ig</span><span class="op">)</span></span>
<span><span class="va">smallest_index</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/which.html" class="external-link">which</a></span><span class="op">(</span><span class="va">ig</span> <span class="op">==</span> <span class="fu"><a href="https://rdrr.io/r/base/Extremes.html" class="external-link">min</a></span><span class="op">(</span><span class="va">ig</span><span class="op">)</span>, arr.ind <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>
<span><span class="va">smallest_index</span></span></code></pre></div>
<pre><code><span><span class="co">## row col</span></span>
<span><span class="co">## [1,] 33 4</span></span></code></pre>
<p>We may change the nucleotide with the lowest score and observe the
change in prediction confidence</p>
<div class="sourceCode" id="cb18"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co"># copy original sequence</span></span>
<span><span class="va">high_gc_seq_one_hot_changed</span> <span class="op">&lt;-</span> <span class="va">high_gc_seq_one_hot</span> </span>
<span></span>
<span><span class="co"># prediction for original sequence</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/stats/predict.html" class="external-link">predict</a></span><span class="op">(</span><span class="va">model</span>, <span class="va">high_gc_seq_one_hot</span>, verbose <span class="op">=</span> <span class="fl">0</span><span class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## [,1] [,2]</span></span>
<span><span class="co">## [1,] 0.9657075 0.0342925</span></span></code></pre>
<div class="sourceCode" id="cb20"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co"># change nt</span></span>
<span><span class="va">smallest_index</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/which.html" class="external-link">which</a></span><span class="op">(</span><span class="va">ig</span> <span class="op">==</span> <span class="fu"><a href="https://rdrr.io/r/base/Extremes.html" class="external-link">min</a></span><span class="op">(</span><span class="va">ig</span><span class="op">)</span>, arr.ind <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>
<span><span class="va">smallest_index</span></span></code></pre></div>
<pre><code><span><span class="co">## row col</span></span>
<span><span class="co">## [1,] 33 4</span></span></code></pre>
<div class="sourceCode" id="cb22"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">row_index</span> <span class="op">&lt;-</span> <span class="va">smallest_index</span><span class="op">[</span> , <span class="st">"row"</span><span class="op">]</span></span>
<span><span class="va">col_index</span> <span class="op">&lt;-</span> <span class="va">smallest_index</span><span class="op">[</span> , <span class="st">"col"</span><span class="op">]</span> </span>
<span><span class="va">new_row</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/rep.html" class="external-link">rep</a></span><span class="op">(</span><span class="fl">0</span>, <span class="fl">4</span><span class="op">)</span></span>
<span><span class="va">nt_index_old</span> <span class="op">&lt;-</span> <span class="va">col_index</span></span>
<span><span class="va">nt_index_new</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/which.min.html" class="external-link">which.max</a></span><span class="op">(</span><span class="va">ig</span><span class="op">[</span><span class="va">row_index</span>, <span class="op">]</span><span class="op">)</span></span>
<span><span class="va">new_row</span><span class="op">[</span><span class="va">nt_index_new</span><span class="op">]</span> <span class="op">&lt;-</span> <span class="fl">1</span></span>
<span><span class="va">high_gc_seq_one_hot_changed</span><span class="op">[</span><span class="fl">1</span>, <span class="va">row_index</span>, <span class="op">]</span> <span class="op">&lt;-</span> <span class="va">new_row</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/cat.html" class="external-link">cat</a></span><span class="op">(</span><span class="st">"At position"</span>, <span class="va">row_index</span>, <span class="st">"changing"</span>, <span class="va">vocabulary</span><span class="op">[</span><span class="va">nt_index_old</span><span class="op">]</span>, <span class="st">"to"</span>, <span class="va">vocabulary</span><span class="op">[</span><span class="va">nt_index_new</span><span class="op">]</span>, <span class="st">"\n"</span><span class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## At position 33 changing T to A</span></span></code></pre>
<div class="sourceCode" id="cb24"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">pred</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/stats/predict.html" class="external-link">predict</a></span><span class="op">(</span><span class="va">model</span>, <span class="va">high_gc_seq_one_hot_changed</span>, verbose <span class="op">=</span> <span class="fl">0</span><span class="op">)</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">pred</span><span class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## [,1] [,2]</span></span>
<span><span class="co">## [1,] 0.9255649 0.07443508</span></span></code></pre>
<p>Let’s repeatedly apply the previous step and change the sequence
after each iteration.</p>
<div class="sourceCode" id="cb26"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co"># copy original sequence</span></span>
<span><span class="va">high_gc_seq_one_hot_changed</span> <span class="op">&lt;-</span> <span class="va">high_gc_seq_one_hot</span> </span>
<span></span>
<span><span class="va">pred_list</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="op">)</span></span>
<span><span class="va">pred_list</span><span class="op">[[</span><span class="fl">1</span><span class="op">]</span><span class="op">]</span> <span class="op">&lt;-</span> <span class="va">pred</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/stats/predict.html" class="external-link">predict</a></span><span class="op">(</span><span class="va">model</span>, <span class="va">high_gc_seq_one_hot</span>, verbose <span class="op">=</span> <span class="fl">0</span><span class="op">)</span></span>
<span></span>
<span><span class="co"># change nts</span></span>
<span><span class="kw">for</span> <span class="op">(</span><span class="va">i</span> <span class="kw">in</span> <span class="fl">1</span><span class="op">:</span><span class="fl">20</span><span class="op">)</span> <span class="op">{</span></span>
<span> </span>
<span> <span class="co"># update ig scores for changed input</span></span>
<span> <span class="va">ig</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/integrated_gradients.html">integrated_gradients</a></span><span class="op">(</span></span>
<span> input_seq <span class="op">=</span> <span class="va">high_gc_seq_one_hot_changed</span>,</span>
<span> target_class_idx <span class="op">=</span> <span class="fl">1</span>,</span>
<span> model <span class="op">=</span> <span class="va">model</span><span class="op">)</span> <span class="op"><a href="../reference/pipe.html">%&gt;%</a></span> <span class="fu"><a href="https://rdrr.io/r/base/array.html" class="external-link">as.array</a></span><span class="op">(</span><span class="op">)</span></span>
<span> </span>
<span> <span class="va">smallest_index</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/which.html" class="external-link">which</a></span><span class="op">(</span><span class="va">ig</span> <span class="op">==</span> <span class="fu"><a href="https://rdrr.io/r/base/Extremes.html" class="external-link">min</a></span><span class="op">(</span><span class="va">ig</span><span class="op">)</span>, arr.ind <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>
<span> <span class="va">smallest_index</span></span>
<span> <span class="va">row_index</span> <span class="op">&lt;-</span> <span class="va">smallest_index</span><span class="op">[</span> , <span class="st">"row"</span><span class="op">]</span></span>
<span> <span class="va">col_index</span> <span class="op">&lt;-</span> <span class="va">smallest_index</span><span class="op">[</span> , <span class="st">"col"</span><span class="op">]</span> </span>
<span> <span class="va">new_row</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/rep.html" class="external-link">rep</a></span><span class="op">(</span><span class="fl">0</span>, <span class="fl">4</span><span class="op">)</span></span>
<span> <span class="va">nt_index_old</span> <span class="op">&lt;-</span> <span class="va">col_index</span></span>
<span> <span class="va">nt_index_new</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/which.min.html" class="external-link">which.max</a></span><span class="op">(</span><span class="va">ig</span><span class="op">[</span><span class="va">row_index</span>, <span class="op">]</span><span class="op">)</span></span>
<span> <span class="va">new_row</span><span class="op">[</span><span class="va">nt_index_new</span><span class="op">]</span> <span class="op">&lt;-</span> <span class="fl">1</span></span>
<span> <span class="va">high_gc_seq_one_hot_changed</span><span class="op">[</span><span class="fl">1</span>, <span class="va">row_index</span>, <span class="op">]</span> <span class="op">&lt;-</span> <span class="va">new_row</span></span>
<span> <span class="fu"><a href="https://rdrr.io/r/base/cat.html" class="external-link">cat</a></span><span class="op">(</span><span class="st">"At position"</span>, <span class="va">row_index</span>, <span class="st">"changing"</span>, <span class="va">vocabulary</span><span class="op">[</span><span class="va">nt_index_old</span><span class="op">]</span>,</span>
<span> <span class="st">"to"</span>, <span class="va">vocabulary</span><span class="op">[</span><span class="va">nt_index_new</span><span class="op">]</span>, <span class="st">"\n"</span><span class="op">)</span></span>
<span> <span class="va">pred</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/stats/predict.html" class="external-link">predict</a></span><span class="op">(</span><span class="va">model</span>, <span class="va">high_gc_seq_one_hot_changed</span>, verbose <span class="op">=</span> <span class="fl">0</span><span class="op">)</span></span>
<span> <span class="va">pred_list</span><span class="op">[[</span><span class="va">i</span> <span class="op">+</span> <span class="fl">1</span><span class="op">]</span><span class="op">]</span> <span class="op">&lt;-</span> <span class="va">pred</span> </span>
<span> </span>
<span><span class="op">}</span></span></code></pre></div>
<pre><code><span><span class="co">## At position 33 changing T to A </span></span>
<span><span class="co">## At position 15 changing T to A </span></span>
<span><span class="co">## At position 46 changing A to C </span></span>
<span><span class="co">## At position 11 changing C to A </span></span>
<span><span class="co">## At position 19 changing C to A </span></span>
<span><span class="co">## At position 19 changing A to C </span></span>
<span><span class="co">## At position 19 changing C to A </span></span>
<span><span class="co">## At position 19 changing A to C </span></span>
<span><span class="co">## At position 19 changing C to A </span></span>
<span><span class="co">## At position 19 changing A to C </span></span>
<span><span class="co">## At position 19 changing C to A </span></span>
<span><span class="co">## At position 19 changing A to C </span></span>
<span><span class="co">## At position 19 changing C to A </span></span>
<span><span class="co">## At position 19 changing A to C </span></span>
<span><span class="co">## At position 19 changing C to A </span></span>
<span><span class="co">## At position 19 changing A to C </span></span>
<span><span class="co">## At position 19 changing C to A </span></span>
<span><span class="co">## At position 19 changing A to C </span></span>
<span><span class="co">## At position 19 changing C to A </span></span>
<span><span class="co">## At position 19 changing A to C</span></span></code></pre>
<div class="sourceCode" id="cb28"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">pred_df</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/do.call.html" class="external-link">do.call</a></span><span class="op">(</span><span class="va">rbind</span>, <span class="va">pred_list</span><span class="op">)</span></span>
<span><span class="va">pred_df</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span><span class="va">pred_df</span>, iteration <span class="op">=</span> <span class="fl">0</span><span class="op">:</span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/nrow.html" class="external-link">nrow</a></span><span class="op">(</span><span class="va">pred_df</span><span class="op">)</span> <span class="op">-</span> <span class="fl">1</span><span class="op">)</span><span class="op">)</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="va">pred_df</span><span class="op">)</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"high_gc"</span>, <span class="st">"equal_dist"</span>, <span class="st">"iteration"</span><span class="op">)</span></span>
<span><span class="fu"><a href="https://ggplot2.tidyverse.org/reference/ggplot.html" class="external-link">ggplot</a></span><span class="op">(</span><span class="va">pred_df</span>, <span class="fu"><a href="https://ggplot2.tidyverse.org/reference/aes.html" class="external-link">aes</a></span><span class="op">(</span>x <span class="op">=</span> <span class="va">iteration</span>, y <span class="op">=</span> <span class="va">high_gc</span><span class="op">)</span><span class="op">)</span> <span class="op">+</span> <span class="fu"><a href="https://ggplot2.tidyverse.org/reference/geom_path.html" class="external-link">geom_line</a></span><span class="op">(</span><span class="op">)</span> <span class="op">+</span> <span class="fu"><a href="https://ggplot2.tidyverse.org/reference/labs.html" class="external-link">ylab</a></span><span class="op">(</span><span class="st">"high GC confidence"</span><span class="op">)</span></span></code></pre></div>
<p><img src="integrated_gradient_files/figure-html/unnamed-chunk-12-1.png" width="700"></p>
<p>We can try the same in the opposite direction, i.e. replace big IG
scores.</p>
<div class="sourceCode" id="cb29"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co"># copy original sequence</span></span>
<span><span class="va">high_gc_seq_one_hot_changed</span> <span class="op">&lt;-</span> <span class="va">high_gc_seq_one_hot</span> </span>
<span></span>
<span><span class="va">pred_list</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="op">)</span></span>
<span><span class="va">pred</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/stats/predict.html" class="external-link">predict</a></span><span class="op">(</span><span class="va">model</span>, <span class="va">high_gc_seq_one_hot</span>, verbose <span class="op">=</span> <span class="fl">0</span><span class="op">)</span></span>
<span><span class="va">pred_list</span><span class="op">[[</span><span class="fl">1</span><span class="op">]</span><span class="op">]</span> <span class="op">&lt;-</span> <span class="va">pred</span></span>
<span></span>
<span><span class="co"># change nts</span></span>
<span><span class="kw">for</span> <span class="op">(</span><span class="va">i</span> <span class="kw">in</span> <span class="fl">1</span><span class="op">:</span><span class="fl">20</span><span class="op">)</span> <span class="op">{</span></span>
<span> </span>
<span> <span class="co"># update ig scores for changed input</span></span>
<span> <span class="va">ig</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/integrated_gradients.html">integrated_gradients</a></span><span class="op">(</span></span>
<span> input_seq <span class="op">=</span> <span class="va">high_gc_seq_one_hot_changed</span>,</span>
<span> target_class_idx <span class="op">=</span> <span class="fl">1</span>,</span>
<span> model <span class="op">=</span> <span class="va">model</span><span class="op">)</span> <span class="op"><a href="../reference/pipe.html">%&gt;%</a></span> <span class="fu"><a href="https://rdrr.io/r/base/array.html" class="external-link">as.array</a></span><span class="op">(</span><span class="op">)</span></span>
<span> </span>
<span> <span class="va">biggest_index</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/which.html" class="external-link">which</a></span><span class="op">(</span><span class="va">ig</span> <span class="op">==</span> <span class="fu"><a href="https://rdrr.io/r/base/Extremes.html" class="external-link">max</a></span><span class="op">(</span><span class="va">ig</span><span class="op">)</span>, arr.ind <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>
<span> <span class="va">biggest_index</span></span>
<span> <span class="va">row_index</span> <span class="op">&lt;-</span> <span class="va">biggest_index</span><span class="op">[</span> , <span class="st">"row"</span><span class="op">]</span></span>
<span> <span class="va">col_index</span> <span class="op">&lt;-</span> <span class="va">biggest_index</span><span class="op">[</span> , <span class="st">"col"</span><span class="op">]</span> </span>
<span> <span class="va">new_row</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/rep.html" class="external-link">rep</a></span><span class="op">(</span><span class="fl">0</span>, <span class="fl">4</span><span class="op">)</span></span>
<span> <span class="va">nt_index_old</span> <span class="op">&lt;-</span> <span class="va">col_index</span></span>
<span> <span class="va">nt_index_new</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/which.min.html" class="external-link">which.min</a></span><span class="op">(</span><span class="va">ig</span><span class="op">[</span><span class="va">row_index</span>, <span class="op">]</span><span class="op">)</span></span>
<span> <span class="va">new_row</span><span class="op">[</span><span class="va">nt_index_new</span><span class="op">]</span> <span class="op">&lt;-</span> <span class="fl">1</span></span>
<span> <span class="va">high_gc_seq_one_hot_changed</span><span class="op">[</span><span class="fl">1</span>, <span class="va">row_index</span>, <span class="op">]</span> <span class="op">&lt;-</span> <span class="va">new_row</span></span>
<span> <span class="fu"><a href="https://rdrr.io/r/base/cat.html" class="external-link">cat</a></span><span class="op">(</span><span class="st">"At position"</span>, <span class="va">row_index</span>, <span class="st">"changing"</span>, <span class="va">vocabulary</span><span class="op">[</span><span class="va">nt_index_old</span><span class="op">]</span>, <span class="st">"to"</span>, <span class="va">vocabulary</span><span class="op">[</span><span class="va">nt_index_new</span><span class="op">]</span>, <span class="st">"\n"</span><span class="op">)</span></span>
<span> </span>
<span> <span class="va">pred</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/stats/predict.html" class="external-link">predict</a></span><span class="op">(</span><span class="va">model</span>, <span class="va">high_gc_seq_one_hot_changed</span>, verbose <span class="op">=</span> <span class="fl">0</span><span class="op">)</span></span>
<span> <span class="va">pred_list</span><span class="op">[[</span><span class="va">i</span> <span class="op">+</span> <span class="fl">1</span><span class="op">]</span><span class="op">]</span> <span class="op">&lt;-</span> <span class="va">pred</span> </span>
<span> </span>
<span><span class="op">}</span></span></code></pre></div>
<pre><code><span><span class="co">## At position 30 changing G to A </span></span>
<span><span class="co">## At position 20 changing G to A </span></span>
<span><span class="co">## At position 34 changing G to A </span></span>
<span><span class="co">## At position 38 changing G to A </span></span>
<span><span class="co">## At position 32 changing C to A </span></span>
<span><span class="co">## At position 18 changing G to A </span></span>
<span><span class="co">## At position 19 changing C to A </span></span>
<span><span class="co">## At position 23 changing C to A </span></span>
<span><span class="co">## At position 25 changing C to A </span></span>
<span><span class="co">## At position 48 changing C to A </span></span>
<span><span class="co">## At position 41 changing G to A </span></span>
<span><span class="co">## At position 10 changing C to A </span></span>
<span><span class="co">## At position 40 changing G to A </span></span>
<span><span class="co">## At position 37 changing G to A </span></span>
<span><span class="co">## At position 42 changing G to A </span></span>
<span><span class="co">## At position 35 changing C to A </span></span>
<span><span class="co">## At position 6 changing G to A </span></span>
<span><span class="co">## At position 36 changing C to A </span></span>
<span><span class="co">## At position 45 changing C to A </span></span>
<span><span class="co">## At position 13 changing G to A</span></span></code></pre>
<div class="sourceCode" id="cb31"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">pred_df</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/do.call.html" class="external-link">do.call</a></span><span class="op">(</span><span class="va">rbind</span>, <span class="va">pred_list</span><span class="op">)</span></span>
<span><span class="va">pred_df</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span><span class="va">pred_df</span>, iteration <span class="op">=</span> <span class="fl">0</span><span class="op">:</span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/nrow.html" class="external-link">nrow</a></span><span class="op">(</span><span class="va">pred_df</span><span class="op">)</span> <span class="op">-</span> <span class="fl">1</span><span class="op">)</span><span class="op">)</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="va">pred_df</span><span class="op">)</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"high_gc"</span>, <span class="st">"equal_dist"</span>, <span class="st">"iteration"</span><span class="op">)</span></span>
<span><span class="fu"><a href="https://ggplot2.tidyverse.org/reference/ggplot.html" class="external-link">ggplot</a></span><span class="op">(</span><span class="va">pred_df</span>, <span class="fu"><a href="https://ggplot2.tidyverse.org/reference/aes.html" class="external-link">aes</a></span><span class="op">(</span>x <span class="op">=</span> <span class="va">iteration</span>, y <span class="op">=</span> <span class="va">high_gc</span><span class="op">)</span><span class="op">)</span> <span class="op">+</span> <span class="fu"><a href="https://ggplot2.tidyverse.org/reference/geom_path.html" class="external-link">geom_line</a></span><span class="op">(</span><span class="op">)</span> <span class="op">+</span> <span class="fu"><a href="https://ggplot2.tidyverse.org/reference/labs.html" class="external-link">ylab</a></span><span class="op">(</span><span class="st">"high GC confidence"</span><span class="op">)</span></span></code></pre></div>
<p><img src="integrated_gradient_files/figure-html/unnamed-chunk-13-1.png" width="700"></p>
</div>
</main><aside class="col-md-3"><nav id="toc"><h2>On this page</h2>
</nav></aside>
</div>
<footer><div class="pkgdown-footer-left">
<p>Developed by Philipp Münch, René Mreches, Martin Binder, Hüseyin Anil Gündüz, Xiao-Yin To, Alice McHardy.</p>
</div>
<div class="pkgdown-footer-right">
<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.9.</p>
</div>
</footer>
</div>
</body>
</html>