|
a |
|
b/tests/testthat/test-predict.R |
|
|
1 |
context("predict") |
|
|
2 |
|
|
|
3 |
test_that("Sucessful prediction", { |
|
|
4 |
|
|
|
5 |
#testthat::skip_if_not_installed("tensorflow") |
|
|
6 |
testthat::skip_if_not(reticulate::py_module_available("tensorflow")) |
|
|
7 |
|
|
|
8 |
sequence <- "AAACCNGGGTTT" |
|
|
9 |
maxlen <- 8 |
|
|
10 |
filename <- tempfile(fileext = ".h5") |
|
|
11 |
|
|
|
12 |
model <- create_model_lstm_cnn( |
|
|
13 |
maxlen = maxlen, |
|
|
14 |
verbose = FALSE, |
|
|
15 |
layer_dense = 4, |
|
|
16 |
layer_lstm = 8) |
|
|
17 |
|
|
|
18 |
# test h5 output |
|
|
19 |
pred <- predict_model(layer_name = NULL, sequence = sequence, |
|
|
20 |
filename = filename, step = 1, |
|
|
21 |
batch_size = 1, |
|
|
22 |
return_states = TRUE, |
|
|
23 |
verbose = FALSE, |
|
|
24 |
output_type = "h5", |
|
|
25 |
model = model, |
|
|
26 |
mode = "label", |
|
|
27 |
include_seq = TRUE) |
|
|
28 |
|
|
|
29 |
expect_true(all(pred$states >= 0)) |
|
|
30 |
expect_true(all(pred$states <= 1)) |
|
|
31 |
expect_equal(pred$sample_end_position, 8:12) |
|
|
32 |
|
|
|
33 |
pred_h5 <- load_prediction(filename, get_sample_position = TRUE) |
|
|
34 |
expect_equal(pred_h5$states, pred$states) |
|
|
35 |
expect_equal(pred_h5$sample_end_position, pred$sample_end_position) |
|
|
36 |
|
|
|
37 |
# batch size bigger than number of samples |
|
|
38 |
pred2 <- predict_model(layer_name = NULL, sequence = sequence, |
|
|
39 |
filename = NULL, step = 1, |
|
|
40 |
batch_size = 100, |
|
|
41 |
return_states = TRUE, |
|
|
42 |
verbose = FALSE, |
|
|
43 |
output_type = "h5", |
|
|
44 |
model = model, |
|
|
45 |
mode = "label", |
|
|
46 |
include_seq = TRUE) |
|
|
47 |
|
|
|
48 |
expect_true(all(abs(pred$states - pred2$states) < 1e-06)) |
|
|
49 |
expect_equal(pred$sample_end_position, pred2$sample_end_position) |
|
|
50 |
|
|
|
51 |
# test csv + padding maxlen + ... (nuc_dist) |
|
|
52 |
filename <- tempfile(fileext = ".csv") |
|
|
53 |
pred <- predict_model(layer_name = NULL, sequence = sequence, |
|
|
54 |
filename = filename, step = 1, |
|
|
55 |
batch_size = 2, |
|
|
56 |
return_states = TRUE, |
|
|
57 |
padding = "maxlen", |
|
|
58 |
verbose = FALSE, |
|
|
59 |
output_type = "csv", model = model, |
|
|
60 |
mode = "label", ambiguous_nuc = "empirical", |
|
|
61 |
nuc_dist = c(0.1,0.4,0.4,0.1), |
|
|
62 |
include_seq = TRUE) |
|
|
63 |
|
|
|
64 |
expect_true(all(pred$states >= 0)) |
|
|
65 |
expect_true(all(pred$states <= 1)) |
|
|
66 |
expect_equal(pred$sample_end_position, 0:12) |
|
|
67 |
|
|
|
68 |
pred_csv <- read.csv(filename) |
|
|
69 |
expect_equal(as.matrix(pred_csv), pred$states) |
|
|
70 |
|
|
|
71 |
# padding |
|
|
72 |
pred <- predict_model(layer_name = NULL, sequence = "AAA", |
|
|
73 |
filename = NULL, step = 2, |
|
|
74 |
batch_size = 2, |
|
|
75 |
return_states = TRUE, |
|
|
76 |
padding = "standard", |
|
|
77 |
verbose = FALSE, |
|
|
78 |
output_type = "csv", model = model, |
|
|
79 |
mode = "label", |
|
|
80 |
include_seq = TRUE) |
|
|
81 |
|
|
|
82 |
expect_true(all(pred$states >= 0)) |
|
|
83 |
expect_true(all(pred$states <= 1)) |
|
|
84 |
expect_equal(pred$sample_end_position, 3) |
|
|
85 |
expect_equal(nrow(pred$states), length(pred$sample_end_position)) |
|
|
86 |
|
|
|
87 |
# step |
|
|
88 |
pred <- predict_model(layer_name = NULL, sequence = "AAAAACCCCC", |
|
|
89 |
filename = NULL, step = 2, |
|
|
90 |
batch_size = 2, |
|
|
91 |
return_states = TRUE, |
|
|
92 |
padding = "standard", |
|
|
93 |
verbose = FALSE, |
|
|
94 |
output_type = "csv", model = model, |
|
|
95 |
mode = "label", |
|
|
96 |
include_seq = TRUE) |
|
|
97 |
|
|
|
98 |
expect_equal(pred$sample_end_position, c(8, 10)) |
|
|
99 |
expect_equal(nrow(pred$states), length(pred$sample_end_position)) |
|
|
100 |
|
|
|
101 |
# fasta file by_entry |
|
|
102 |
Sequence <- c("AAAACCCC", "TT", "AAACCCGGGTTT") |
|
|
103 |
Header <- letters[1:3] |
|
|
104 |
df <- data.frame(Sequence, Header) |
|
|
105 |
fasta_path <- tempfile(fileext = ".fasta") |
|
|
106 |
microseq::writeFasta(df, fasta_path) |
|
|
107 |
output_path <- tempfile() |
|
|
108 |
dir.create(output_path) |
|
|
109 |
|
|
|
110 |
expect_message( |
|
|
111 |
predict_model(layer_name = NULL, |
|
|
112 |
path_input = fasta_path, |
|
|
113 |
output_format = "by_entry", |
|
|
114 |
output_dir = output_path, |
|
|
115 |
filename = "states.h5", |
|
|
116 |
step = 2, |
|
|
117 |
batch_size = 2, |
|
|
118 |
padding = "none", |
|
|
119 |
verbose = TRUE, |
|
|
120 |
output_type = "h5", |
|
|
121 |
model = model, |
|
|
122 |
mode = "label", |
|
|
123 |
include_seq = TRUE) |
|
|
124 |
) |
|
|
125 |
|
|
|
126 |
h5_files <- list.files(output_path, full.names = TRUE) |
|
|
127 |
expect_true(basename(h5_files[1]) == "states_nr_1.h5") |
|
|
128 |
expect_true(basename(h5_files[2]) == "states_nr_3.h5") |
|
|
129 |
|
|
|
130 |
output_list_1 <- load_prediction(h5_files[1], get_sample_position = TRUE) |
|
|
131 |
expect_equal(output_list_1$sample_end_position, 8) |
|
|
132 |
output_list_2 <- load_prediction(h5_files[2], get_sample_position = TRUE) |
|
|
133 |
expect_equal(output_list_2$sample_end_position, c(8,10,12)) |
|
|
134 |
|
|
|
135 |
# fasta file, by_entry |
|
|
136 |
h5_file <- tempfile(fileext = ".h5") |
|
|
137 |
pred <- predict_model(layer_name = NULL, |
|
|
138 |
path_input = fasta_path, |
|
|
139 |
output_format = "by_entry_one_file", |
|
|
140 |
filename = h5_file, |
|
|
141 |
step = 2, |
|
|
142 |
batch_size = 2, |
|
|
143 |
padding = "none", |
|
|
144 |
verbose = FALSE, |
|
|
145 |
output_type = "h5", |
|
|
146 |
model = model, |
|
|
147 |
mode = "label") |
|
|
148 |
|
|
|
149 |
output_list <- load_prediction(h5_file, get_sample_position = TRUE) |
|
|
150 |
expect_true(all(output_list[[1]]$states == output_list_1$states)) |
|
|
151 |
expect_true(all(output_list[[1]]$sample_end_position == output_list_1$sample_end_position)) |
|
|
152 |
expect_true(all(output_list[[2]]$states == output_list_2$states)) |
|
|
153 |
expect_true(all(output_list[[2]]$sample_end_position == output_list_2$sample_end_position)) |
|
|
154 |
|
|
|
155 |
# one pred per entry |
|
|
156 |
h5_file <- tempfile(fileext = ".h5") |
|
|
157 |
pred <- predict_model(layer_name = NULL, |
|
|
158 |
path_input = fasta_path, |
|
|
159 |
output_format = "one_pred_per_entry", |
|
|
160 |
filename = h5_file, |
|
|
161 |
step = 2, |
|
|
162 |
batch_size = 2, |
|
|
163 |
verbose = FALSE, |
|
|
164 |
output_type = "h5", |
|
|
165 |
model = model, |
|
|
166 |
mode = "label") |
|
|
167 |
|
|
|
168 |
output_list <- load_prediction(h5_file) |
|
|
169 |
expect_equal(nrow(output_list$states), nrow(df)) |
|
|
170 |
|
|
|
171 |
# lm, target middle |
|
|
172 |
model <- create_model_lstm_cnn_target_middle( |
|
|
173 |
maxlen = maxlen, |
|
|
174 |
verbose = FALSE, |
|
|
175 |
layer_dense = 4, |
|
|
176 |
layer_lstm = 8) |
|
|
177 |
|
|
|
178 |
h5_file <- tempfile(fileext = ".h5") |
|
|
179 |
pred <- predict_model(layer_name = NULL, |
|
|
180 |
path_input = fasta_path, |
|
|
181 |
output_format = "by_entry_one_file", |
|
|
182 |
filename = h5_file, |
|
|
183 |
step = 2, |
|
|
184 |
target_len = 1, |
|
|
185 |
batch_size = 2, |
|
|
186 |
padding = "standard", |
|
|
187 |
verbose = FALSE, |
|
|
188 |
output_type = "h5", |
|
|
189 |
lm_format = "target_middle_lstm", |
|
|
190 |
model = model, |
|
|
191 |
mode = "lm") |
|
|
192 |
|
|
|
193 |
output_list <- load_prediction(h5_file, get_sample_position = TRUE) |
|
|
194 |
expect_equal(output_list[[1]]$sample_end_position, 8) |
|
|
195 |
expect_equal(output_list[[2]]$sample_end_position, 2) |
|
|
196 |
expect_equal(output_list[[3]]$sample_end_position[1], 9) |
|
|
197 |
|
|
|
198 |
}) |