--- a +++ b/man/train_model.Rd @@ -0,0 +1,363 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/train.R +\name{train_model} +\alias{train_model} +\title{Train neural network on genomic data} +\usage{ +train_model( + model = NULL, + dataset = NULL, + dataset_val = NULL, + train_val_ratio = 0.2, + run_name = "run_1", + initial_epoch = 0, + class_weight = NULL, + print_scores = TRUE, + epochs = 10, + max_queue_size = 100, + steps_per_epoch = 1000, + path_checkpoint = NULL, + path_tensorboard = NULL, + path_log = NULL, + save_best_only = NULL, + save_weights_only = FALSE, + tb_images = FALSE, + path_file_log = NULL, + reset_states = FALSE, + early_stopping_time = NULL, + validation_only_after_training = FALSE, + train_val_split_csv = NULL, + reduce_lr_on_plateau = TRUE, + lr_plateau_factor = 0.9, + patience = 20, + cooldown = 1, + model_card = NULL, + callback_list = NULL, + train_type = "label_folder", + path = NULL, + path_val = NULL, + batch_size = 64, + step = NULL, + shuffle_file_order = TRUE, + vocabulary = c("a", "c", "g", "t"), + format = "fasta", + ambiguous_nuc = "zero", + seed = c(1234, 4321), + file_limit = NULL, + use_coverage = NULL, + set_learning = NULL, + proportion_entries = NULL, + sample_by_file_size = FALSE, + n_gram = NULL, + n_gram_stride = 1, + masked_lm = NULL, + random_sampling = FALSE, + add_noise = NULL, + return_int = FALSE, + maxlen = NULL, + reverse_complement = FALSE, + reverse_complement_encoding = FALSE, + output_format = "target_right", + proportion_per_seq = NULL, + read_data = FALSE, + use_quality_score = FALSE, + padding = FALSE, + concat_seq = NULL, + target_len = 1, + skip_amb_nuc = NULL, + max_samples = NULL, + added_label_path = NULL, + add_input_as_seq = NULL, + target_from_csv = NULL, + target_split = NULL, + shuffle_input = TRUE, + vocabulary_label = NULL, + delete_used_files = FALSE, + reshape_xy = NULL, + return_gen = FALSE +) +} +\arguments{ +\item{model}{A keras model.} + +\item{dataset}{List of training data holding training samples in RAM instead of using generator. Should be list with two entries called \code{"X"} and \code{"Y"}.} + +\item{dataset_val}{List of validation data. Should have two entries called \code{"X"} and \code{"Y"}.} + +\item{train_val_ratio}{For generator defines the fraction of batches that will be used for validation (compared to size of training data), i.e. one validation iteration +processes \code{batch_size} \eqn{*} \code{steps_per_epoch} \eqn{*} \code{train_val_ratio} samples. If you use dataset instead of generator and \code{dataset_val} is \code{NULL}, splits \code{dataset} +into train/validation data.} + +\item{run_name}{Name of the run. Name will be used to identify output from callbacks. If \code{NULL}, will use date as run name. +If name already present, will add \code{"_2"} to name or \code{"_{x+1}"} if name ends with \verb{_x}, where \code{x} is some integer.} + +\item{initial_epoch}{Epoch at which to start training. Note that network +will run for (\code{epochs} - \code{initial_epochs}) rounds and not \code{epochs} rounds.} + +\item{class_weight}{List of weights for output. Order should correspond to \code{vocabulary_label}. +You can use \code{\link{get_class_weight}} function to estimate class weights: + +\code{class_weights <- get_class_weights(path = path, train_type = train_type)} + +If \code{train_type = "label_csv"} you need to add path to csv file: + +\code{class_weights <- get_class_weights(path = path, train_type = train_type, csv_path = target_from_csv)}} + +\item{print_scores}{Whether to print train/validation scores during training.} + +\item{epochs}{Number of iterations.} + +\item{max_queue_size}{Maximum size for the generator queue.} + +\item{steps_per_epoch}{Number of training batches per epoch.} + +\item{path_checkpoint}{Path to checkpoints folder or \code{NULL}. If \code{NULL}, checkpoints don't get stored.} + +\item{path_tensorboard}{Path to tensorboard directory or \code{NULL}. If \code{NULL}, training not tracked on tensorboard.} + +\item{path_log}{Path to directory to write training scores. File name is \code{run_name} + \code{".csv"}. No output if \code{NULL}.} + +\item{save_best_only}{Only save model that improved on some score. Not applied if argument is \code{NULL}. Otherwise must be +list with argument \code{monitor} or \code{save_freq} (can only use one option). \code{moniter} specifies what metric to use. +\code{save_freq}, integer specifying how often to store a checkpoint (in epochs).} + +\item{save_weights_only}{Whether to save weights only.} + +\item{tb_images}{Whether to show custom images (confusion matrix) in tensorboard "IMAGES" tab.} + +\item{path_file_log}{Write name of files used for training to csv file if path is specified.} + +\item{reset_states}{Whether to reset hidden states of RNN layer at every new input file and before/after validation.} + +\item{early_stopping_time}{Time in seconds after which to stop training.} + +\item{validation_only_after_training}{Whether to skip validation during training and only do one validation iteration after training.} + +\item{train_val_split_csv}{A csv file specifying train/validation split. csv file should contain one column named \code{"file"} and one column named +\code{"type"}. The \code{"file"} column contains names of fasta/fastq files and \code{"type"} column specifies if file is used for training or validation. +Entries in \code{"type"} must be named \code{"train"} or \code{"val"}, otherwise file will not be used for either. \code{path} and \code{path_val} arguments should be the same. +Not implemented for \code{train_type = "label_folder"}.} + +\item{reduce_lr_on_plateau}{Whether to use learning rate scheduler.} + +\item{lr_plateau_factor}{Factor of decreasing learning rate when plateau is reached.} + +\item{patience}{Number of epochs waiting for decrease in validation loss before reducing learning rate.} + +\item{cooldown}{Number of epochs without changing learning rate.} + +\item{model_card}{List of arguments for training parameters of training run. Must contain at least an entry \code{path_model_card}, i.e. the +directory where parameters are stored. List can contain additional (optional) arguments, for example +\code{model_card = list(path_model_card = "/path/to/logs", description = "transfer learning with BERT model on virus data", ...)}} + +\item{callback_list}{Add additional callbacks to \code{keras::fit} call.} + +\item{train_type}{Either \code{"lm"}, \code{"lm_rds"}, \code{"masked_lm"} for language model; \code{"label_header"}, \code{"label_folder"}, \code{"label_csv"}, \code{"label_rds"} for classification or \code{"dummy_gen"}. +\itemize{ +\item Language model is trained to predict character(s) in a sequence. \cr +\item \code{"label_header"}/\code{"label_folder"}/\code{"label_csv"} are trained to predict a corresponding class given a sequence as input. +\item If \code{"label_header"}, class will be read from fasta headers. +\item If \code{"label_folder"}, class will be read from folder, i.e. all files in one folder must belong to the same class. +\item If \code{"label_csv"}, targets are read from a csv file. This file should have one column named "file". The targets then correspond to entries in that row (except "file" +column). Example: if we are currently working with a file called "a.fasta" and corresponding label is "label_1", there should be a row in our csv file\tabular{lll}{ + file \tab label_1 \tab label_2 \cr + "a.fasta" \tab 1 \tab 0 \cr +} + + +\item If \code{"label_rds"}, generator will iterate over set of .rds files containing each a list of input and target tensors. Not implemented for model +with multiple inputs. +\item If \code{"lm_rds"}, generator will iterate over set of .rds files and will split tensor according to \code{target_len} argument +(targets are last \code{target_len} nucleotides of each sequence). +\item If \code{"dummy_gen"}, generator creates random data once and repeatedly feeds these to model. +\item If \code{"masked_lm"}, generator maskes some parts of the input. See \code{masked_lm} argument for details. +}} + +\item{path}{Path to training data. If \code{train_type} is \code{label_folder}, should be a vector or list +where each entry corresponds to a class (list elements can be directories and/or individual files). If \code{train_type} is not \code{label_folder}, +can be a single directory or file or a list of directories and/or files.} + +\item{path_val}{Path to validation data. See \code{path} argument for details.} + +\item{batch_size}{Number of samples used for one network update.} + +\item{step}{Frequency of sampling steps.} + +\item{shuffle_file_order}{Boolean, whether to go through files sequentially or shuffle beforehand.} + +\item{vocabulary}{Vector of allowed characters. Characters outside vocabulary get encoded as specified in \code{ambiguous_nuc}.} + +\item{format}{File format, \code{"fasta"}, \code{"fastq"}, \code{"rds"} or \code{"fasta.tar.gz"}, \code{"fastq.tar.gz"} for \code{tar.gz} files.} + +\item{ambiguous_nuc}{How to handle nucleotides outside vocabulary, either \code{"zero"}, \code{"discard"}, \code{"empirical"} or \code{"equal"}. +\itemize{ +\item If \code{"zero"}, input gets encoded as zero vector. +\item If \code{"equal"}, input is repetition of \code{1/length(vocabulary)}. +\item If \code{"discard"}, samples containing nucleotides outside vocabulary get discarded. +\item If \code{"empirical"}, use nucleotide distribution of current file. +}} + +\item{seed}{Sets seed for reproducible results.} + +\item{file_limit}{Integer or \code{NULL}. If integer, use only specified number of randomly sampled files for training. Ignored if greater than number of files in \code{path}.} + +\item{use_coverage}{Integer or \code{NULL}. If not \code{NULL}, use coverage as encoding rather than one-hot encoding and normalize. +Coverage information must be contained in fasta header: there must be a string \code{"cov_n"} in the header, where \code{n} is some integer.} + +\item{set_learning}{When you want to assign one label to set of samples. Only implemented for \code{train_type = "label_folder"}. +Input is a list with the following parameters +\itemize{ +\item \code{samples_per_target}: how many samples to use for one target. +\item \code{maxlen}: length of one sample. +\item \code{reshape_mode}: \verb{"time_dist", "multi_input"} or \code{"concat"}. +\itemize{ +\item +If \code{reshape_mode} is \code{"multi_input"}, generator will produce \code{samples_per_target} separate inputs, each of length \code{maxlen} (model should have +\code{samples_per_target} input layers). +\item If reshape_mode is \code{"time_dist"}, generator will produce a 4D input array. The dimensions correspond to +\verb{(batch_size, samples_per_target, maxlen, length(vocabulary))}. +\item If \code{reshape_mode} is \code{"concat"}, generator will concatenate \code{samples_per_target} sequences +of length \code{maxlen} to one long sequence. +} +\item If \code{reshape_mode} is \code{"concat"}, there is an additional \code{buffer_len} +argument. If \code{buffer_len} is an integer, the subsequences are interspaced with \code{buffer_len} rows. The input length is +(\code{maxlen} \eqn{*} \code{samples_per_target}) + \code{buffer_len} \eqn{*} (\code{samples_per_target} - 1). +}} + +\item{proportion_entries}{Proportion of fasta entries to keep. For example, if fasta file has 50 entries and \code{proportion_entries = 0.1}, +will randomly select 5 entries.} + +\item{sample_by_file_size}{Sample new file weighted by file size (bigger files more likely).} + +\item{n_gram}{Integer, encode target not nucleotide wise but combine n nucleotides at once. For example for \verb{n=2, "AA" -> (1, 0,..., 0),} +\verb{"AC" -> (0, 1, 0,..., 0), "TT" -> (0,..., 0, 1)}, where the one-hot vectors have length \code{length(vocabulary)^n}.} + +\item{n_gram_stride}{Step size for n-gram encoding. For AACCGGTT with \code{n_gram = 4} and \code{n_gram_stride = 2}, generator encodes +\verb{(AACC), (CCGG), (GGTT)}; for \code{n_gram_stride = 4} generator encodes \verb{(AACC), (GGTT)}.} + +\item{masked_lm}{If not \code{NULL}, input and target are equal except some parts of the input are masked or random. +Must be list with the following arguments: +\itemize{ +\item \code{mask_rate}: Rate of input to mask (rate of input to replace with mask token). +\item \code{random_rate}: Rate of input to set to random token. +\item \code{identity_rate}: Rate of input where sample weights are applied but input and output are identical. +\item \code{include_sw}: Whether to include sample weights. +\item \code{block_len} (optional): Masked/random/identity regions appear in blocks of size \code{block_len}. +}} + +\item{random_sampling}{Whether samples should be taken from random positions when using \code{max_samples} argument. If \code{FALSE} random +samples are taken from a consecutive subsequence.} + +\item{add_noise}{\code{NULL} or list of arguments. If not \code{NULL}, list must contain the following arguments: \code{noise_type} can be \code{"normal"} or \code{"uniform"}; +optional arguments \code{sd} or \code{mean} if noise_type is \code{"normal"} (default is \code{sd=1} and \code{mean=0}) or \verb{min, max} if \code{noise_type} is \code{"uniform"} +(default is \verb{min=0, max=1}).} + +\item{return_int}{Whether to return integer encoding or one-hot encoding.} + +\item{maxlen}{Length of predictor sequence.} + +\item{reverse_complement}{Boolean, for every new file decide randomly to use original data or its reverse complement.} + +\item{reverse_complement_encoding}{Whether to use both original sequence and reverse complement as two input sequences.} + +\item{output_format}{Determines shape of output tensor for language model. +Either \code{"target_right"}, \code{"target_middle_lstm"}, \code{"target_middle_cnn"} or \code{"wavenet"}. +Assume a sequence \code{"AACCGTA"}. Output correspond as follows +\itemize{ +\item \verb{"target_right": X = "AACCGT", Y = "A"} +\item \verb{"target_middle_lstm": X = (X_1 = "AAC", X_2 = "ATG"), Y = "C"} (note reversed order of X_2) +\item \verb{"target_middle_cnn": X = "AACGTA", Y = "C"} +\item \verb{"wavenet": X = "AACCGT", Y = "ACCGTA"} +}} + +\item{proportion_per_seq}{Numerical value between 0 and 1. Proportion of sequence to take samples from (use random subsequence).} + +\item{read_data}{If \code{TRUE} the first element of output is a list of length 2, each containing one part of paired read. Maxlen should be 2*length of one read.} + +\item{use_quality_score}{Whether to use fastq quality scores. If \code{TRUE} input is not one-hot-encoding but corresponds to probabilities. +For example (0.97, 0.01, 0.01, 0.01) instead of (1, 0, 0, 0).} + +\item{padding}{Whether to pad sequences too short for one sample with zeros.} + +\item{concat_seq}{Character string or \code{NULL}. If not \code{NULL} all entries from file get concatenated to one sequence with \code{concat_seq} string between them. +Example: If 1.entry AACC, 2. entry TTTG and \code{concat_seq = "ZZZ"} this becomes AACCZZZTTTG.} + +\item{target_len}{Number of nucleotides to predict at once for language model.} + +\item{skip_amb_nuc}{Threshold of ambiguous nucleotides to accept in fasta entry. Complete entry will get discarded otherwise.} + +\item{max_samples}{Maximum number of samples to use from one file. If not \code{NULL} and file has more than \code{max_samples} samples, will randomly choose a +subset of \code{max_samples} samples.} + +\item{added_label_path}{Path to file with additional input labels. Should be a csv file with one column named "file". Other columns should correspond to labels.} + +\item{add_input_as_seq}{Boolean vector specifying for each entry in \code{added_label_path} if rows from csv should be encoded as a sequence or used directly. +If a row in your csv file is a sequence this should be \code{TRUE}. For example you may want to add another sequence, say ACCGT. Then this would correspond to 1,2,2,3,4 in +csv file (if vocabulary = c("A", "C", "G", "T")). If \code{add_input_as_seq} is \code{TRUE}, 12234 gets one-hot encoded, so added input is a 3D tensor. If \code{add_input_as_seq} is +\code{FALSE} this will feed network just raw data (a 2D tensor).} + +\item{target_from_csv}{Path to csv file with target mapping. One column should be called "file" and other entries in row are the targets.} + +\item{target_split}{If target gets read from csv file, list of names to divide target tensor into list of tensors. +Example: if csv file has header names \verb{"file", "label_1", "label_2", "label_3"} and \code{target_split = list(c("label_1", "label_2"), "label_3")}, +this will divide target matrix to list of length 2, where the first element contains columns named \code{"label_1"} and \code{"label_2"} and the +second entry contains the column named \code{"label_3"}.} + +\item{shuffle_input}{Whether to shuffle entries in file.} + +\item{vocabulary_label}{Character vector of possible targets. Targets outside \code{vocabulary_label} will get discarded if +\code{train_type = "label_header"}.} + +\item{delete_used_files}{Whether to delete file once used. Only applies for rds files.} + +\item{reshape_xy}{Can be a list of functions to apply to input and/or target. List elements (containing the reshape functions) +must be called x for input or y for target and each have arguments called x and y. For example: +\code{reshape_xy = list(x = function(x, y) {return(x+1)}, y = function(x, y) {return(x+y)})} . +For rds generator needs to have an additional argument called sw.} + +\item{return_gen}{Whether to return the train and validation generators (instead of training).} +} +\value{ +A list of training metrics. +} +\description{ +Train a neural network on genomic data. Data can be fasta/fastq files, rds files or a prepared data set. +If the data is given as collection of fasta, fastq or rds files, function will create a data generator that extracts training and validation batches +from files. Function includes several options to determine the sampling strategy of the generator and preprocessing of the data. +Training progress can be visualized in tensorboard. Model weights can be stored during training using checkpoints. +} +\examples{ +\dontshow{if (reticulate::py_module_available("tensorflow")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf} +# create dummy data +path_train_1 <- tempfile() +path_train_2 <- tempfile() +path_val_1 <- tempfile() +path_val_2 <- tempfile() + +for (current_path in c(path_train_1, path_train_2, + path_val_1, path_val_2)) { + dir.create(current_path) + create_dummy_data(file_path = current_path, + num_files = 3, + seq_length = 10, + num_seq = 5, + vocabulary = c("a", "c", "g", "t")) +} + +# create model +model <- create_model_lstm_cnn(layer_lstm = 8, layer_dense = 2, maxlen = 5) + +# train model +hist <- train_model(train_type = "label_folder", + model = model, + path = c(path_train_1, path_train_2), + path_val = c(path_val_1, path_val_2), + batch_size = 8, + epochs = 3, + steps_per_epoch = 6, + step = 5, + format = "fasta", + vocabulary_label = c("label_1", "label_2")) + +\dontshow{\}) # examplesIf} +}