|
a |
|
b/man/reshape_tensor.Rd |
|
|
1 |
% Generated by roxygen2: do not edit by hand |
|
|
2 |
% Please edit documentation in R/preprocess.R |
|
|
3 |
\name{reshape_tensor} |
|
|
4 |
\alias{reshape_tensor} |
|
|
5 |
\title{Reshape tensors for set learning} |
|
|
6 |
\usage{ |
|
|
7 |
reshape_tensor( |
|
|
8 |
x, |
|
|
9 |
y, |
|
|
10 |
new_batch_size, |
|
|
11 |
samples_per_target, |
|
|
12 |
buffer_len = NULL, |
|
|
13 |
reshape_mode = "time_dist", |
|
|
14 |
check_y = FALSE |
|
|
15 |
) |
|
|
16 |
} |
|
|
17 |
\arguments{ |
|
|
18 |
\item{x}{3D input tensor.} |
|
|
19 |
|
|
|
20 |
\item{y}{2D target tensor.} |
|
|
21 |
|
|
|
22 |
\item{new_batch_size}{Size of first axis of input/targets after reshaping.} |
|
|
23 |
|
|
|
24 |
\item{samples_per_target}{How many samples to use for one target} |
|
|
25 |
|
|
|
26 |
\item{buffer_len}{Only applies if \code{reshape_mode = "concat"}. If \code{buffer_len} is an integer, the subsequences are interspaced with \code{buffer_len} rows. The reshaped x has |
|
|
27 |
new maxlen: (\code{maxlen} \eqn{*} \code{samples_per_target}) + \code{buffer_len} \eqn{*} (\code{samples_per_target} - 1).} |
|
|
28 |
|
|
|
29 |
\item{reshape_mode}{\verb{"time_dist", "multi_input"} or \code{"concat"} |
|
|
30 |
\itemize{ |
|
|
31 |
\item If \code{"multi_input"}, will produce \code{samples_per_target} separate inputs, each of length \code{maxlen}. |
|
|
32 |
\item If \code{"time_dist"}, will produce a 4D input array. The dimensions correspond to |
|
|
33 |
\verb{(new_batch_size, samples_per_target, maxlen, length(vocabulary))}. |
|
|
34 |
\item If \code{"concat"}, will concatenate \code{samples_per_target} sequences of length \code{maxlen} to one long sequence |
|
|
35 |
}} |
|
|
36 |
|
|
|
37 |
\item{check_y}{Check if entries in \code{y} are consistent with reshape strategy (same label when aggregating).} |
|
|
38 |
} |
|
|
39 |
\value{ |
|
|
40 |
A list of 2 tensors. |
|
|
41 |
} |
|
|
42 |
\description{ |
|
|
43 |
Reshape input x and target y. Aggregates multiple samples from x and y into single input/target batches. |
|
|
44 |
} |
|
|
45 |
\examples{ |
|
|
46 |
\dontshow{if (reticulate::py_module_available("tensorflow")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf} |
|
|
47 |
# create dummy data |
|
|
48 |
batch_size <- 8 |
|
|
49 |
maxlen <- 11 |
|
|
50 |
voc_len <- 4 |
|
|
51 |
x <- sample(0:(voc_len-1), maxlen*batch_size, replace = TRUE) |
|
|
52 |
x <- keras::to_categorical(x, num_classes = voc_len) |
|
|
53 |
x <- array(x, dim = c(batch_size, maxlen, voc_len)) |
|
|
54 |
y <- rep(0:1, each = batch_size/2) |
|
|
55 |
y <- keras::to_categorical(y, num_classes = 2) |
|
|
56 |
y |
|
|
57 |
|
|
|
58 |
# reshape data for multi input model |
|
|
59 |
reshaped_data <- reshape_tensor( |
|
|
60 |
x = x, |
|
|
61 |
y = y, |
|
|
62 |
new_batch_size = 2, |
|
|
63 |
samples_per_target = 4, |
|
|
64 |
reshape_mode = "multi_input") |
|
|
65 |
|
|
|
66 |
length(reshaped_data[[1]]) |
|
|
67 |
dim(reshaped_data[[1]][[1]]) |
|
|
68 |
reshaped_data[[2]] |
|
|
69 |
\dontshow{\}) # examplesIf} |
|
|
70 |
} |