|
a |
|
b/man/plot_roc.Rd |
|
|
1 |
% Generated by roxygen2: do not edit by hand |
|
|
2 |
% Please edit documentation in R/evaluation.R |
|
|
3 |
\name{plot_roc} |
|
|
4 |
\alias{plot_roc} |
|
|
5 |
\title{Plot ROC} |
|
|
6 |
\usage{ |
|
|
7 |
plot_roc(y_true, y_conf, path_roc_plot = NULL, return_plot = TRUE) |
|
|
8 |
} |
|
|
9 |
\arguments{ |
|
|
10 |
\item{y_true}{Matrix of true labels.} |
|
|
11 |
|
|
|
12 |
\item{y_conf}{Matrix of predictions.} |
|
|
13 |
|
|
|
14 |
\item{path_roc_plot}{Where to store ROC plot.} |
|
|
15 |
|
|
|
16 |
\item{return_plot}{Whether to return plot.} |
|
|
17 |
} |
|
|
18 |
\value{ |
|
|
19 |
A ggplot of ROC curve. |
|
|
20 |
} |
|
|
21 |
\description{ |
|
|
22 |
Compute ROC and AUC from target and prediction matrix and plot ROC. Target/prediction matrix should |
|
|
23 |
have one column if output of layer with sigmoid activation and two columns for softmax activation. |
|
|
24 |
} |
|
|
25 |
\examples{ |
|
|
26 |
y_true <- matrix(c(1, 0, 0, 0, 1, 1), ncol = 1) |
|
|
27 |
y_conf <- matrix(runif(n = nrow(y_true)), ncol = 1) |
|
|
28 |
p <- plot_roc(y_true, y_conf, return_plot = TRUE) |
|
|
29 |
p |
|
|
30 |
|
|
|
31 |
} |