--- a +++ b/man/load_cp.Rd @@ -0,0 +1,68 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/create_model_utils.R +\name{load_cp} +\alias{load_cp} +\title{Load checkpoint} +\usage{ +load_cp( + cp_path, + cp_filter = "last_ep", + ep_index = NULL, + compile = FALSE, + learning_rate = 0.01, + solver = "adam", + re_compile = FALSE, + loss = "categorical_crossentropy", + add_custom_object = NULL, + margin = 1, + verbose = TRUE, + mirrored_strategy = FALSE +) +} +\arguments{ +\item{cp_path}{A directory containing checkpoints or a single checkpoint file. +If a directory, choose checkpoint based on \code{cp_filter} or \code{ep_index}.} + +\item{cp_filter}{Condition to choose checkpoint if \code{cp_path} is a directory. +Either "acc" for best validation accuracy, "loss" for best validation loss or "last_ep" for last epoch.} + +\item{ep_index}{Load checkpoint from specific epoch number. If not \code{NULL}, has priority over \code{cp_filter}.} + +\item{compile}{Whether to load compiled model.} + +\item{learning_rate}{Learning rate for optimizer.} + +\item{solver}{Optimization method, options are \verb{"adam", "adagrad", "rmsprop"} or \code{"sgd"}.} + +\item{re_compile}{Whether to compile model with parameters from \code{learning_rate}, +\code{solver} and \code{loss}.} + +\item{loss}{Loss function. Only used if model gets compiled.} + +\item{add_custom_object}{Named list of custom objects.} + +\item{margin}{Margin for contrastive loss, see \link{loss_cl}.} + +\item{verbose}{Whether to print chosen checkpoint path.} + +\item{mirrored_strategy}{Whether to use distributed mirrored strategy. If NULL, will use distributed mirrored strategy only if >1 GPU available.} +} +\value{ +A keras model loaded from a checkpoint. +} +\description{ +Load checkpoint from directory. Chooses best checkpoint based on some condition. Condition +can be best accuracy, best loss, last epoch number or a specified epoch number. +} +\examples{ +\donttest{ +library(keras) +model <- create_model_lstm_cnn(layer_lstm = 8) +checkpoint_folder <- tempfile() +dir.create(checkpoint_folder) +keras::save_model_hdf5(model, file.path(checkpoint_folder, 'Ep.007-val_loss11.07-val_acc0.6.hdf5')) +keras::save_model_hdf5(model, file.path(checkpoint_folder, 'Ep.019-val_loss8.74-val_acc0.7.hdf5')) +keras::save_model_hdf5(model, file.path(checkpoint_folder, 'Ep.025-val_loss0.03-val_acc0.8.hdf5')) +model <- load_cp(cp_path = checkpoint_folder, cp_filter = "last_ep") +} +}