--- a +++ b/man/heatmaps_integrated_grad.Rd @@ -0,0 +1,37 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/visualization.R +\name{heatmaps_integrated_grad} +\alias{heatmaps_integrated_grad} +\title{Heatmap of integrated gradient scores} +\usage{ +heatmaps_integrated_grad(integrated_grads, input_seq) +} +\arguments{ +\item{integrated_grads}{Matrix of integrated gradient scores (output of \code{\link{integrated_gradients}} function).} + +\item{input_seq}{Input sequence for model. Should be the same as \code{input_seq} input for corresponding +\code{\link{integrated_gradients}} call that computed input for \code{integrated_grads} argument.} +} +\value{ +A list of heatmaps. +} +\description{ +Creates a heatmap from output of \code{\link{integrated_gradients}} function. The first row contains +the column-wise absolute sums of IG scores and the second row the sums. Rows 3 to 6 contain the IG scores for each +position and each nucleotide. The last row contains nucleotide information. +} +\examples{ +\dontshow{if (reticulate::py_module_available("tensorflow") && requireNamespace("ComplexHeatmap", quietly = TRUE)) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf} +library(reticulate) +model <- create_model_lstm_cnn(layer_lstm = 8, layer_dense = 3, maxlen = 20, verbose = FALSE) +random_seq <- sample(0:3, 20, replace = TRUE) +input_seq <- array(keras::to_categorical(random_seq), dim = c(1, 20, 4)) +ig <- integrated_gradients( + input_seq = input_seq, + target_class_idx = 3, + model = model) +heatmaps_integrated_grad(integrated_grads = ig, + input_seq = input_seq) + +\dontshow{\}) # examplesIf} +}