[409433]: / man / f1_wrapper.Rd

Download this file

51 lines (44 with data), 1.7 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/metrics.R
\name{f1_wrapper}
\alias{f1_wrapper}
\title{F1 metric}
\usage{
f1_wrapper(num_targets = 2, loss = "binary_crossentropy")
}
\arguments{
\item{num_targets}{Size of model output.}
\item{loss}{Loss function of model.}
}
\value{
A keras metric.
}
\description{
Compute F1 metric. If loss is \code{"categorical_crossentropy"}, number of targets must be 2. If
loss is \code{"binary_crossentropy"} and number of targets > 1, will flatten \code{y_true} and \code{y_pred} matrices
to a single vector (rather than computing separate F1 scores for each class).
}
\examples{
\dontshow{if (reticulate::py_module_available("tensorflow")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
y_true <- c(1,0,0,1,1,0,1,0,0)
y_pred <- c(0.9,0.05,0.05,0.9,0.05,0.05,0.9,0.05,0.05)
\donttest{
library(keras)
f1_metric <- f1_wrapper(3L, "binary_crossentropy")
f1_metric$update_state(y_true, y_pred)
f1_metric$result()
# add metric to a model
num_targets <- 1
model <- create_model_lstm_cnn(maxlen = 20,
layer_lstm = 8,
bal_acc = FALSE,
last_layer_activation = "sigmoid",
loss_fn = "binary_crossentropy",
layer_dense = c(8, num_targets))
f1_metric <- f1_wrapper(num_targets, loss = model$loss)
model \%>\% keras::compile(loss = model$loss,
optimizer = model$optimizer,
metrics = c(model$metrics, f1_metric))
}
\dontshow{\}) # examplesIf}
}