--- a +++ b/man/evaluate_softmax.Rd @@ -0,0 +1,33 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/evaluation.R +\name{evaluate_softmax} +\alias{evaluate_softmax} +\title{Evaluate matrices of true targets and predictions from layer with softmax activation.} +\usage{ +evaluate_softmax(y, y_conf, auc = FALSE, auprc = FALSE, label_names = NULL) +} +\arguments{ +\item{y}{Matrix of true target.} + +\item{y_conf}{Matrix of predictions.} + +\item{auc}{Whether to include AUC metric. Only possible for 2 targets.} + +\item{auprc}{Whether to include AUPRC metric. Only possible for 2 targets.} + +\item{label_names}{Names of corresponding labels. Length must be equal to number of columns of \code{y}.} +} +\value{ +A list of evaluation results. +} +\description{ +Compute confusion matrix, accuracy, categorical crossentropy and (optionally) AUC or AUPRC, given predictions and +true targets. AUC and AUPRC only possible for 2 targets. +} +\examples{ +\dontshow{if (reticulate::py_module_available("tensorflow")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf} +y <- matrix(c(1, 0, 0, 0, 1, 1), ncol = 2) +y_conf <- matrix(c(0.3, 0.5, 0.1, 0.7, 0.5, 0.9), ncol = 2) +evaluate_softmax(y, y_conf, auc = TRUE, auprc = TRUE, label_names = c("A", "B")) +\dontshow{\}) # examplesIf} +}