|
a |
|
b/man/evaluate_sigmoid.Rd |
|
|
1 |
% Generated by roxygen2: do not edit by hand |
|
|
2 |
% Please edit documentation in R/evaluation.R |
|
|
3 |
\name{evaluate_sigmoid} |
|
|
4 |
\alias{evaluate_sigmoid} |
|
|
5 |
\title{Evaluate matrices of true targets and predictions from layer with sigmoid activation.} |
|
|
6 |
\usage{ |
|
|
7 |
evaluate_sigmoid(y, y_conf, auc = FALSE, auprc = FALSE, label_names = NULL) |
|
|
8 |
} |
|
|
9 |
\arguments{ |
|
|
10 |
\item{y}{Matrix of true target.} |
|
|
11 |
|
|
|
12 |
\item{y_conf}{Matrix of predictions.} |
|
|
13 |
|
|
|
14 |
\item{auc}{Whether to include AUC metric.} |
|
|
15 |
|
|
|
16 |
\item{auprc}{Whether to include AUPRC metric.} |
|
|
17 |
|
|
|
18 |
\item{label_names}{Names of corresponding labels. Length must be equal to number of columns of \code{y}.} |
|
|
19 |
} |
|
|
20 |
\value{ |
|
|
21 |
A list of evaluation results. |
|
|
22 |
} |
|
|
23 |
\description{ |
|
|
24 |
Compute accuracy, binary crossentropy and (optionally) AUC or AUPRC, given predictions and |
|
|
25 |
true targets. Outputs columnwise average. |
|
|
26 |
} |
|
|
27 |
\examples{ |
|
|
28 |
\dontshow{if (reticulate::py_module_available("tensorflow")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf} |
|
|
29 |
y <- matrix(sample(c(0, 1), 30, replace = TRUE), ncol = 3) |
|
|
30 |
y_conf <- matrix(runif(n = 30), ncol = 3) |
|
|
31 |
evaluate_sigmoid(y, y_conf, auc = TRUE, auprc = TRUE) |
|
|
32 |
\dontshow{\}) # examplesIf} |
|
|
33 |
} |