[409433]: / man / evaluate_model.Rd

Download this file

149 lines (119 with data), 6.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/evaluation.R
\name{evaluate_model}
\alias{evaluate_model}
\title{Evaluates a trained model on fasta, fastq or rds files}
\usage{
evaluate_model(
path_input,
model = NULL,
batch_size = 100,
step = 1,
padding = FALSE,
vocabulary = c("a", "c", "g", "t"),
vocabulary_label = list(c("a", "c", "g", "t")),
number_batches = 10,
format = "fasta",
target_middle = FALSE,
mode = "lm",
output_format = "target_right",
ambiguous_nuc = "zero",
evaluate_all_files = FALSE,
verbose = TRUE,
max_iter = 20000,
target_from_csv = NULL,
max_samples = NULL,
proportion_per_seq = NULL,
concat_seq = NULL,
seed = 1234,
auc = FALSE,
auprc = FALSE,
path_pred_list = NULL,
exact_num_samples = NULL,
activations = NULL,
shuffle_file_order = FALSE,
include_seq = FALSE,
...
)
}
\arguments{
\item{path_input}{Input directory where fasta, fastq or rds files are located.}
\item{model}{A keras model.}
\item{batch_size}{Number of samples per batch.}
\item{step}{How often to take a sample.}
\item{padding}{Whether to pad sequences too short for one sample with zeros.}
\item{vocabulary}{Vector of allowed characters. Character outside vocabulary get encoded as specified in ambiguous_nuc.}
\item{vocabulary_label}{List of labels for targets of each output layer.}
\item{number_batches}{How many batches to evaluate.}
\item{format}{File format, \code{"fasta"}, \code{"fastq"} or \code{"rds"}.}
\item{target_middle}{Whether model is language model with separate input layers.}
\item{mode}{Either \code{"lm"} for language model or \code{"label_header"}, \code{"label_csv"} or \code{"label_folder"} for label classification.}
\item{output_format}{Determines shape of output tensor for language model.
Either \code{"target_right"}, \code{"target_middle_lstm"}, \code{"target_middle_cnn"} or \code{"wavenet"}.
Assume a sequence \code{"AACCGTA"}. Output correspond as follows
\itemize{
\item \verb{"target_right": X = "AACCGT", Y = "A"}
\item \verb{"target_middle_lstm": X = (X_1 = "AAC", X_2 = "ATG"), Y = "C"} (note reversed order of X_2)
\item \verb{"target_middle_cnn": X = "AACGTA", Y = "C"}
\item \verb{"wavenet": X = "AACCGT", Y = "ACCGTA"}
}}
\item{ambiguous_nuc}{How to handle nucleotides outside vocabulary, either \code{"zero"}, \code{"discard"}, \code{"empirical"} or \code{"equal"}.
\itemize{
\item If \code{"zero"}, input gets encoded as zero vector.
\item If \code{"equal"}, input is repetition of \code{1/length(vocabulary)}.
\item If \code{"discard"}, samples containing nucleotides outside vocabulary get discarded.
\item If \code{"empirical"}, use nucleotide distribution of current file.
}}
\item{evaluate_all_files}{Boolean, if \code{TRUE} will iterate over all files in \code{path_input} once. \code{number_batches} will be overwritten.}
\item{verbose}{Boolean.}
\item{max_iter}{Stop after \code{max_iter} number of iterations failed to produce a new batch.}
\item{target_from_csv}{Path to csv file with target mapping. One column should be called "file" and other entries in row are the targets.}
\item{max_samples}{Maximum number of samples to use from one file. If not \code{NULL} and file has more than \code{max_samples} samples, will randomly choose a
subset of \code{max_samples} samples.}
\item{proportion_per_seq}{Numerical value between 0 and 1. Proportion of sequence to take samples from (use random subsequence).}
\item{concat_seq}{Character string or \code{NULL}. If not \code{NULL} all entries from file get concatenated to one sequence with \code{concat_seq} string between them.
Example: If 1.entry AACC, 2. entry TTTG and \code{concat_seq = "ZZZ"} this becomes AACCZZZTTTG.}
\item{seed}{Sets seed for \code{set.seed} function for reproducible results.}
\item{auc}{Whether to include AUC metric. If output layer activation is \code{"softmax"}, only possible for 2 targets. Computes the average if output layer has sigmoid
activation and multiple targets.}
\item{auprc}{Whether to include AUPRC metric. If output layer activation is \code{"softmax"}, only possible for 2 targets. Computes the average if output layer has sigmoid
activation and multiple targets.}
\item{path_pred_list}{Path to store list of predictions (output of output layers) and corresponding true labels as rds file.}
\item{exact_num_samples}{Exact number of samples to evaluate. If you want to evaluate a number of samples not divisible by batch_size. Useful if you want
to evaluate a data set exactly ones and know the number of samples already. Should be a vector if \code{mode = "label_folder"} (with same length as \code{vocabulary_label})
and else an integer.}
\item{activations}{List containing output formats for output layers (\verb{softmax, sigmoid} or \code{linear}). If \code{NULL}, will be estimated from model.}
\item{shuffle_file_order}{Logical, whether to go through files randomly or sequentially.}
\item{include_seq}{Whether to store input. Only applies if \code{path_pred_list} is not \code{NULL}.}
\item{...}{Further generator options. See \code{\link{get_generator}}.}
}
\value{
A list of evaluation results. Each list element corresponds to an output layer of the model.
}
\description{
Returns evaluation metric like confusion matrix, loss, AUC, AUPRC, MAE, MSE (depending on output layer).
}
\examples{
\dontshow{if (reticulate::py_module_available("tensorflow")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
# create dummy data
path_input <- tempfile()
dir.create(path_input)
create_dummy_data(file_path = path_input,
num_files = 3,
seq_length = 11,
num_seq = 5,
vocabulary = c("a", "c", "g", "t"))
# create model
model <- create_model_lstm_cnn(layer_lstm = 8, layer_dense = 4, maxlen = 10, verbose = FALSE)
# evaluate
evaluate_model(path_input = path_input,
model = model,
step = 11,
vocabulary = c("a", "c", "g", "t"),
vocabulary_label = list(c("a", "c", "g", "t")),
mode = "lm",
output_format = "target_right",
evaluate_all_files = TRUE,
verbose = FALSE)
\dontshow{\}) # examplesIf}
}