|
a |
|
b/man/evaluate_linear.Rd |
|
|
1 |
% Generated by roxygen2: do not edit by hand |
|
|
2 |
% Please edit documentation in R/evaluation.R |
|
|
3 |
\name{evaluate_linear} |
|
|
4 |
\alias{evaluate_linear} |
|
|
5 |
\title{Evaluate matrices of true targets and predictions from layer with linear activation.} |
|
|
6 |
\usage{ |
|
|
7 |
evaluate_linear(y_true, y_pred, label_names = NULL) |
|
|
8 |
} |
|
|
9 |
\arguments{ |
|
|
10 |
\item{y_true}{Matrix of true labels.} |
|
|
11 |
|
|
|
12 |
\item{y_pred}{Matrix of predictions.} |
|
|
13 |
|
|
|
14 |
\item{label_names}{Names of corresponding labels. Length must be equal to number of columns of \code{y}.} |
|
|
15 |
} |
|
|
16 |
\value{ |
|
|
17 |
A list of evaluation results. |
|
|
18 |
} |
|
|
19 |
\description{ |
|
|
20 |
Compute MAE and MSE, given predictions and |
|
|
21 |
true targets. Outputs columnwise average. |
|
|
22 |
} |
|
|
23 |
\examples{ |
|
|
24 |
\dontshow{if (reticulate::py_module_available("tensorflow")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf} |
|
|
25 |
y_true <- matrix(rnorm(n = 12), ncol = 3) |
|
|
26 |
y_pred <- matrix(rnorm(n = 12), ncol = 3) |
|
|
27 |
evaluate_linear(y_true, y_pred) |
|
|
28 |
\dontshow{\}) # examplesIf} |
|
|
29 |
} |