Diff of /man/compile_model.Rd [000000] .. [409433]

Switch to unified view

a b/man/compile_model.Rd
1
% Generated by roxygen2: do not edit by hand
2
% Please edit documentation in R/create_model_utils.R
3
\name{compile_model}
4
\alias{compile_model}
5
\title{Compile model}
6
\usage{
7
compile_model(
8
  model,
9
  solver,
10
  learning_rate,
11
  loss_fn,
12
  label_smoothing = 0,
13
  num_output_layers = 1,
14
  label_noise_matrix = NULL,
15
  bal_acc = FALSE,
16
  f1_metric = FALSE,
17
  auc_metric = FALSE,
18
  layer_dense = NULL
19
)
20
}
21
\arguments{
22
\item{model}{A keras model.}
23
24
\item{solver}{Optimization method, options are \verb{"adam", "adagrad", "rmsprop"} or \code{"sgd"}.}
25
26
\item{learning_rate}{Learning rate for optimizer.}
27
28
\item{loss_fn}{Either \code{"categorical_crossentropy"} or \code{"binary_crossentropy"}. If \code{label_noise_matrix} given, will use custom \code{"noisy_loss"}.}
29
30
\item{label_smoothing}{Float in [0, 1]. If 0, no smoothing is applied. If > 0, loss between the predicted
31
labels and a smoothed version of the true labels, where the smoothing squeezes the labels towards 0.5.
32
The closer the argument is to 1 the more the labels get smoothed.}
33
34
\item{num_output_layers}{Number of output layers.}
35
36
\item{label_noise_matrix}{Matrix of label noises. Every row stands for one class and columns for percentage of labels in that class.
37
If first label contains 5 percent wrong labels and second label no noise, then
38
39
\code{label_noise_matrix <- matrix(c(0.95, 0.05, 0, 1), nrow = 2, byrow = TRUE )}}
40
41
\item{bal_acc}{Whether to add balanced accuracy.}
42
43
\item{f1_metric}{Whether to add F1 metric.}
44
45
\item{auc_metric}{Whether to add AUC metric.}
46
47
\item{layer_dense}{Vector specifying number of neurons per dense layer after last LSTM or CNN layer (if no LSTM used).}
48
}
49
\value{
50
A compiled keras model.
51
}
52
\description{
53
Compile model
54
}
55
\examples{
56
\dontshow{if (reticulate::py_module_available("tensorflow")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
57
58
model <- create_model_lstm_cnn(layer_lstm = 8, compile = FALSE)
59
model <- compile_model(model = model,
60
                       solver = 'adam',
61
                      learning_rate = 0.01,
62
                       loss_fn = 'categorical_crossentropy')
63
\dontshow{\}) # examplesIf}
64
}