|
a |
|
b/man/auc_wrapper.Rd |
|
|
1 |
% Generated by roxygen2: do not edit by hand |
|
|
2 |
% Please edit documentation in R/metrics.R |
|
|
3 |
\name{auc_wrapper} |
|
|
4 |
\alias{auc_wrapper} |
|
|
5 |
\title{Mean AUC score} |
|
|
6 |
\usage{ |
|
|
7 |
auc_wrapper(model_output_size, loss = "binary_crossentropy") |
|
|
8 |
} |
|
|
9 |
\arguments{ |
|
|
10 |
\item{model_output_size}{Number of neurons in model output layer.} |
|
|
11 |
|
|
|
12 |
\item{loss}{Loss function of model, for which metric will be applied to; must be \code{"binary_crossentropy"} |
|
|
13 |
or \code{"categorical_crossentropy"}.} |
|
|
14 |
} |
|
|
15 |
\value{ |
|
|
16 |
A keras metric. |
|
|
17 |
} |
|
|
18 |
\description{ |
|
|
19 |
Compute AUC score as additional metric. If model has several output neurons with binary crossentropy loss, will use the average score. |
|
|
20 |
} |
|
|
21 |
\examples{ |
|
|
22 |
\dontshow{if (reticulate::py_module_available("tensorflow")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf} |
|
|
23 |
|
|
|
24 |
y_true <- c(1,0,0,1,1,0,1,0,0) \%>\% matrix(ncol = 3) |
|
|
25 |
y_pred <- c(0.9,0.05,0.05,0.9,0.05,0.05,0.9,0.05,0.05) \%>\% matrix(ncol = 3) |
|
|
26 |
|
|
|
27 |
\donttest{ |
|
|
28 |
library(keras) |
|
|
29 |
auc_metric <- auc_wrapper(3L, "binary_crossentropy") |
|
|
30 |
|
|
|
31 |
auc_metric$update_state(y_true, y_pred) |
|
|
32 |
auc_metric$result() |
|
|
33 |
|
|
|
34 |
# add metric to a model |
|
|
35 |
num_targets <- 4 |
|
|
36 |
model <- create_model_lstm_cnn(maxlen = 20, |
|
|
37 |
layer_lstm = 8, |
|
|
38 |
bal_acc = FALSE, |
|
|
39 |
last_layer_activation = "sigmoid", |
|
|
40 |
loss_fn = "binary_crossentropy", |
|
|
41 |
layer_dense = c(8, num_targets)) |
|
|
42 |
|
|
|
43 |
auc_metric <- auc_wrapper(num_targets, loss = model$loss) |
|
|
44 |
model \%>\% keras::compile(loss = model$loss, |
|
|
45 |
optimizer = model$optimizer, |
|
|
46 |
metrics = c(model$metrics, auc_metric)) |
|
|
47 |
} |
|
|
48 |
\dontshow{\}) # examplesIf} |
|
|
49 |
} |