a b/docs/articles/getting_started.html
1
<!DOCTYPE html>
2
<!-- Generated by pkgdown: do not edit by hand --><html lang="en">
3
<head>
4
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
5
<meta charset="utf-8">
6
<meta http-equiv="X-UA-Compatible" content="IE=edge">
7
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
8
<meta name="description" content="deepG">
9
<title>Getting started • deepG</title>
10
<!-- favicons --><link rel="icon" type="image/png" sizes="16x16" href="../favicon-16x16.png">
11
<link rel="icon" type="image/png" sizes="32x32" href="../favicon-32x32.png">
12
<link rel="apple-touch-icon" type="image/png" sizes="180x180" href="../apple-touch-icon.png">
13
<link rel="apple-touch-icon" type="image/png" sizes="120x120" href="../apple-touch-icon-120x120.png">
14
<link rel="apple-touch-icon" type="image/png" sizes="76x76" href="../apple-touch-icon-76x76.png">
15
<link rel="apple-touch-icon" type="image/png" sizes="60x60" href="../apple-touch-icon-60x60.png">
16
<script src="../deps/jquery-3.6.0/jquery-3.6.0.min.js"></script><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
17
<link href="../deps/bootstrap-5.3.1/bootstrap.min.css" rel="stylesheet">
18
<script src="../deps/bootstrap-5.3.1/bootstrap.bundle.min.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous">
19
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous">
20
<!-- bootstrap-toc --><script src="https://cdn.jsdelivr.net/gh/afeld/bootstrap-toc@v1.0.1/dist/bootstrap-toc.min.js" integrity="sha256-4veVQbu7//Lk5TSmc7YV48MxtMy98e26cf5MrgZYnwo=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.11/clipboard.min.js" integrity="sha512-7O5pXpc0oCRrxk8RUfDYFgn0nO1t+jLuIOQdOMRp4APB7uZ4vSjspzp5y6YDtDs4VzUSTbWzBFZ/LKJhnyFOKw==" crossorigin="anonymous" referrerpolicy="no-referrer"></script><!-- search --><script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/6.4.6/fuse.js" integrity="sha512-zv6Ywkjyktsohkbp9bb45V6tEMoWhzFzXis+LrMehmJZZSys19Yxf1dopHx7WzIKxr5tK2dVcYmaCk2uqdjF4A==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/autocomplete.js/0.38.0/autocomplete.jquery.min.js" integrity="sha512-GU9ayf+66Xx2TmpxqJpliWbT5PiGYxpaG8rfnBEk1LL8l1KGkRShhngwdXK1UgqhAzWpZHSiYPc09/NwDQIGyg==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/mark.min.js" integrity="sha512-5CYOlHXGh6QpOFA/TeTylKLWfB3ftPsde7AnmhuitiTX4K5SqCLBeKro6sPS8ilsz1Q4NRx3v8Ko2IBiszzdww==" crossorigin="anonymous"></script><!-- pkgdown --><script src="../pkgdown.js"></script><meta property="og:title" content="Getting started">
21
<meta property="og:description" content="deepG">
22
<meta property="og:image" content="https://genomenet.github.io/deepG/logo.png">
23
<!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
24
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
25
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
26
<![endif]-->
27
</head>
28
<body>
29
    <a href="#main" class="visually-hidden-focusable">Skip to contents</a>
30
    
31
32
    <nav class="navbar fixed-top navbar-light navbar-expand-lg bg-light" data-bs-theme="light"><div class="container">
33
    
34
    <a class="navbar-brand me-2" href="../index.html">deepG</a>
35
36
    <small class="nav-text text-default me-auto" data-bs-toggle="tooltip" data-bs-placement="bottom" title="Released version">0.3.0</small>
37
38
    
39
    <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbar" aria-controls="navbar" aria-expanded="false" aria-label="Toggle navigation">
40
      <span class="navbar-toggler-icon"></span>
41
    </button>
42
43
    <div id="navbar" class="collapse navbar-collapse ms-3">
44
      <ul class="navbar-nav me-auto">
45
<li class="nav-item">
46
  <a class="nav-link" href="../reference/index.html">
47
    <span class="fa fa fa fa-file-alt"></span>
48
     
49
    Reference
50
  </a>
51
</li>
52
<li class="nav-item dropdown">
53
  <a href="#" class="nav-link dropdown-toggle" data-bs-toggle="dropdown" role="button" aria-expanded="false" aria-haspopup="true" id="dropdown-notebooks">Notebooks</a>
54
  <div class="dropdown-menu" aria-labelledby="dropdown-notebooks">
55
    <a class="external-link dropdown-item" href="https://colab.research.google.com/drive/175jIdXcDcgPUvaBo2rH2Lupbpjnp5O7G?usp=sharing">deepG tutorial</a>
56
    <a class="external-link dropdown-item" href="https://colab.research.google.com/drive/1Eolc0koMNM1zkuO4XyVM58ImeF1BpRiH?usp=sharing">Read-length level: Human contamination</a>
57
    <a class="external-link dropdown-item" href="https://colab.research.google.com/drive/1yiXSwFafXpMLHaov9iBTQLIDZ6bK1zYX?usp=sharing">Locus level: CRISPR detection</a>
58
    <a class="external-link dropdown-item" href="https://colab.research.google.com/drive/1G7bOFEX87cZNrM2tdRtTdkrZn5fM__g0?usp=sharing">Gene level: 16S rRNA detection</a>
59
    <a class="external-link dropdown-item" href="https://colab.research.google.com/drive/1BCggL-tfQF136YeJ8cKKi-zoBEDMgkNh?usp=sharing">Genome level: Bacterial morphology (Sporulation)</a>
60
    <a class="external-link dropdown-item" href="https://colab.research.google.com/drive/10xpRzGd3JeBAbqQYSCxzQUMctt01sx9D?usp=sharing">Full metagenome level: Colorectal cancer prediction</a>
61
    <a class="external-link dropdown-item" href="https://colab.research.google.com/drive/1kyYK7IU7GSfdpDzO_a8U3_qD4i3zTu6w?usp=sharing">BERT with deepG</a>
62
  </div>
63
</li>
64
<li class="active nav-item dropdown">
65
  <a href="#" class="nav-link dropdown-toggle" data-bs-toggle="dropdown" role="button" aria-expanded="false" aria-haspopup="true" id="dropdown-tutorials">Tutorials</a>
66
  <div class="dropdown-menu" aria-labelledby="dropdown-tutorials">
67
    <a class="dropdown-item" href="../articles/getting_started.html">Getting Started</a>
68
    <a class="dropdown-item" href="../articles/training_types.html">Training types</a>
69
    <a class="dropdown-item" href="../articles/data_generator.html">Data generator</a>
70
    <a class="dropdown-item" href="../articles/using_tb.html">Using tensorboard</a>
71
    <a class="dropdown-item" href="../articles/integrated_gradient.html">Integrated Gradient</a>
72
  </div>
73
</li>
74
      </ul>
75
<form class="form-inline my-2 my-lg-0" role="search">
76
        <input type="search" class="form-control me-sm-2" aria-label="Toggle navigation" name="search-input" data-search-index="../search.json" id="search-input" placeholder="Search for" autocomplete="off">
77
</form>
78
79
      <ul class="navbar-nav">
80
<li class="nav-item">
81
  <a class="external-link nav-link" href="https://github.com/GenomeNet/deepG/" aria-label="github">
82
    <span class="fab fa fab fa-github fa-lg"></span>
83
     
84
  </a>
85
</li>
86
      </ul>
87
</div>
88
89
    
90
  </div>
91
</nav><div class="container template-article">
92
93
94
95
96
<div class="row">
97
  <main id="main" class="col-md-9"><div class="page-header">
98
      <img src="../logo.png" class="logo" alt=""><h1>Getting started</h1>
99
            
100
      
101
      <small class="dont-index">Source: <a href="https://github.com/GenomeNet/deepG/blob/HEAD/vignettes/getting_started.Rmd" class="external-link"><code>vignettes/getting_started.Rmd</code></a></small>
102
      <div class="d-none name"><code>getting_started.Rmd</code></div>
103
    </div>
104
105
    
106
    
107
<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">
108
<code class="sourceCode R"><span><span class="co">#devtools::install_github("GenomeNet/deepG")</span></span>
109
<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://github.com/GenomeNet/deepG" class="external-link">deepG</a></span><span class="op">)</span></span>
110
<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://magrittr.tidyverse.org" class="external-link">magrittr</a></span><span class="op">)</span></span></code></pre></div>
111
<style type="text/css">
112
mark.in {
113
  background-color: CornflowerBlue;
114
}
115
116
mark.out {
117
  background-color: IndianRed;
118
}
119
120
</style>
121
<div class="section level2">
122
<h2 id="introduction">Introduction<a class="anchor" aria-label="anchor" href="#introduction"></a>
123
</h2>
124
<p>The goal of the deepG package is to speed up the development of
125
bioinformatical tools for sequence classification, homology detection
126
and other bioinformatical tasks. The package offers several functions
127
for</p>
128
<ul>
129
<li>Data (pre-) processing</li>
130
<li>Deep learning architectures</li>
131
<li>Model training</li>
132
<li>Model evaluation</li>
133
<li>Visualizing training progress</li>
134
</ul>
135
<div class="section level3">
136
<h3 id="create-dummy-data">Create dummy data<a class="anchor" aria-label="anchor" href="#create-dummy-data"></a>
137
</h3>
138
<p>We create two simple dummy training and validation data sets. Both
139
consist of random <tt>ACGT</tt> sequences but the first category has a
140
probability of 40% each for drawing <tt>G</tt> or <tt>C</tt> and the
141
second has equal probability for each nucleotide (first category has
142
around 80% <tt>GC</tt> content and second one around 50%).</p>
143
<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">
144
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/Random.html" class="external-link">set.seed</a></span><span class="op">(</span><span class="fl">123</span><span class="op">)</span></span>
145
<span><span class="va">vocabulary</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"A"</span>, <span class="st">"C"</span>, <span class="st">"G"</span>, <span class="st">"T"</span><span class="op">)</span></span>
146
<span></span>
147
<span><span class="va">data_type</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"train_1"</span>, <span class="st">"train_2"</span>, <span class="st">"val_1"</span>, <span class="st">"val_2"</span><span class="op">)</span></span>
148
<span></span>
149
<span><span class="kw">for</span> <span class="op">(</span><span class="va">i</span> <span class="kw">in</span> <span class="fl">1</span><span class="op">:</span><span class="fu"><a href="https://rdrr.io/r/base/length.html" class="external-link">length</a></span><span class="op">(</span><span class="va">data_type</span><span class="op">)</span><span class="op">)</span> <span class="op">{</span></span>
150
<span>  </span>
151
<span>  <span class="va">temp_file</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/tempfile.html" class="external-link">tempfile</a></span><span class="op">(</span><span class="op">)</span></span>
152
<span>  <span class="fu"><a href="https://rdrr.io/r/base/assign.html" class="external-link">assign</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/paste.html" class="external-link">paste0</a></span><span class="op">(</span><span class="va">data_type</span><span class="op">[</span><span class="va">i</span><span class="op">]</span>, <span class="st">"_dir"</span><span class="op">)</span>, <span class="va">temp_file</span><span class="op">)</span></span>
153
<span>  <span class="fu"><a href="https://rdrr.io/r/base/files2.html" class="external-link">dir.create</a></span><span class="op">(</span><span class="va">temp_file</span><span class="op">)</span></span>
154
<span>  </span>
155
<span>  <span class="kw">if</span> <span class="op">(</span><span class="va">i</span> <span class="op"><a href="https://rdrr.io/r/base/Arithmetic.html" class="external-link">%%</a></span> <span class="fl">2</span> <span class="op">==</span> <span class="fl">1</span><span class="op">)</span> <span class="op">{</span></span>
156
<span>    <span class="va">header</span> <span class="op">&lt;-</span> <span class="st">"high_gc"</span></span>
157
<span>    <span class="va">prob</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0.1</span>, <span class="fl">0.4</span>, <span class="fl">0.4</span>, <span class="fl">0.1</span><span class="op">)</span></span>
158
<span>  <span class="op">}</span> <span class="kw">else</span> <span class="op">{</span></span>
159
<span>    <span class="va">header</span> <span class="op">&lt;-</span> <span class="st">"equal_dist"</span></span>
160
<span>    <span class="va">prob</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/rep.html" class="external-link">rep</a></span><span class="op">(</span><span class="fl">0.25</span>, <span class="fl">4</span><span class="op">)</span></span>
161
<span>  <span class="op">}</span></span>
162
<span>  </span>
163
<span>  <span class="va">fasta_name_start</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html" class="external-link">paste0</a></span><span class="op">(</span><span class="va">header</span>, <span class="st">"_"</span>, <span class="va">data_type</span><span class="op">[</span><span class="va">i</span><span class="op">]</span>, <span class="st">"file"</span><span class="op">)</span></span>
164
<span>  </span>
165
<span>  <span class="fu"><a href="../reference/create_dummy_data.html">create_dummy_data</a></span><span class="op">(</span>file_path <span class="op">=</span> <span class="va">temp_file</span>,</span>
166
<span>                    num_files <span class="op">=</span> <span class="fl">1</span>,</span>
167
<span>                    seq_length <span class="op">=</span> <span class="fl">10000</span>, </span>
168
<span>                    num_seq <span class="op">=</span> <span class="fl">1</span>,</span>
169
<span>                    header <span class="op">=</span> <span class="va">header</span>,</span>
170
<span>                    prob <span class="op">=</span> <span class="va">prob</span>,</span>
171
<span>                    fasta_name_start <span class="op">=</span> <span class="va">fasta_name_start</span>,</span>
172
<span>                    vocabulary <span class="op">=</span> <span class="va">vocabulary</span><span class="op">)</span></span>
173
<span>  </span>
174
<span><span class="op">}</span></span></code></pre></div>
175
</div>
176
<div class="section level3">
177
<h3 id="training">Training<a class="anchor" aria-label="anchor" href="#training"></a>
178
</h3>
179
<p>We can now train a model that can differentiate between the two
180
categories. First, we can create our network architecture. We take an
181
input size of 50 nucleotides. The model has one lstm layer with 16 cells
182
and two dense layers with 8 and 2 neurons.</p>
183
<div class="sourceCode" id="cb3"><pre class="downlit sourceCode r">
184
<code class="sourceCode R"><span><span class="va">maxlen</span> <span class="op">&lt;-</span> <span class="fl">50</span></span>
185
<span><span class="va">model</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/create_model_lstm_cnn.html">create_model_lstm_cnn</a></span><span class="op">(</span>maxlen <span class="op">=</span> <span class="va">maxlen</span>,</span>
186
<span>                               layer_lstm <span class="op">=</span> <span class="fl">16</span>,</span>
187
<span>                               layer_dense <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">8</span>, <span class="fl">2</span><span class="op">)</span><span class="op">)</span></span></code></pre></div>
188
<pre><code><span><span class="co">## Model: "model"</span></span>
189
<span><span class="co">## _________________________________________________________________</span></span>
190
<span><span class="co">##  Layer (type)                Output Shape              Param #   </span></span>
191
<span><span class="co">## =================================================================</span></span>
192
<span><span class="co">##  input_1 (InputLayer)        [(None, 50, 4)]           0         </span></span>
193
<span><span class="co">##                                                                  </span></span>
194
<span><span class="co">##  lstm (LSTM)                 (None, 16)                1344      </span></span>
195
<span><span class="co">##                                                                  </span></span>
196
<span><span class="co">##  dense (Dense)               (None, 8)                 136       </span></span>
197
<span><span class="co">##                                                                  </span></span>
198
<span><span class="co">##  dense_1 (Dense)             (None, 2)                 18        </span></span>
199
<span><span class="co">##                                                                  </span></span>
200
<span><span class="co">## =================================================================</span></span>
201
<span><span class="co">## Total params: 1498 (5.85 KB)</span></span>
202
<span><span class="co">## Trainable params: 1498 (5.85 KB)</span></span>
203
<span><span class="co">## Non-trainable params: 0 (0.00 Byte)</span></span>
204
<span><span class="co">## _________________________________________________________________</span></span></code></pre>
205
<p>Next we can train the model using the <code>train_model</code>
206
function. Function will internally build a data generator for
207
training.</p>
208
<div class="sourceCode" id="cb5"><pre class="downlit sourceCode r">
209
<code class="sourceCode R"><span><span class="va">hist</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/train_model.html">train_model</a></span><span class="op">(</span><span class="va">model</span>,</span>
210
<span>                    train_type <span class="op">=</span> <span class="st">"label_folder"</span>,</span>
211
<span>                    run_name <span class="op">=</span> <span class="st">"gc_model_1"</span>,</span>
212
<span>                    path <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="va">train_1_dir</span>, <span class="va">train_2_dir</span><span class="op">)</span>,</span>
213
<span>                    path_val <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="va">val_1_dir</span>, <span class="va">val_2_dir</span><span class="op">)</span>,</span>
214
<span>                    epochs <span class="op">=</span> <span class="fl">4</span>,</span>
215
<span>                    steps_per_epoch <span class="op">=</span> <span class="fl">25</span>, <span class="co"># one epoch = 25 batches</span></span>
216
<span>                    batch_size <span class="op">=</span> <span class="fl">64</span>,</span>
217
<span>                    step <span class="op">=</span> <span class="fl">50</span>, <span class="co"># take a sample every 50 nt</span></span>
218
<span>                    vocabulary_label <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"high_gc"</span>, <span class="st">"equal_dist"</span><span class="op">)</span><span class="op">)</span></span></code></pre></div>
219
<pre><code><span><span class="co">## Epoch 1/4</span></span>
220
<span><span class="co">##  1/25 [&gt;.............................] - ETA: 21s - loss: 0.7058 - acc: 0.5938 4/25 [===&gt;..........................] - ETA: 0s - loss: 0.7028 - acc: 0.5430  7/25 [=======&gt;......................] - ETA: 0s - loss: 0.7013 - acc: 0.533510/25 [===========&gt;..................] - ETA: 0s - loss: 0.6976 - acc: 0.539114/25 [===============&gt;..............] - ETA: 0s - loss: 0.6935 - acc: 0.559217/25 [===================&gt;..........] - ETA: 0s - loss: 0.6900 - acc: 0.577221/25 [========================&gt;.....] - ETA: 0s - loss: 0.6860 - acc: 0.607124/25 [===========================&gt;..] - ETA: 0s - loss: 0.6821 - acc: 0.624325/25 [==============================] - 2s 31ms/step - loss: 0.6813 - acc: 0.6256 - val_loss: 0.6511 - val_acc: 0.7563 - lr: 0.0010</span></span>
221
<span><span class="co">## Epoch 2/4</span></span>
222
<span><span class="co">##  1/25 [&gt;.............................] - ETA: 0s - loss: 0.6379 - acc: 0.8281 4/25 [===&gt;..........................] - ETA: 0s - loss: 0.6423 - acc: 0.7617 8/25 [========&gt;.....................] - ETA: 0s - loss: 0.6340 - acc: 0.785212/25 [=============&gt;................] - ETA: 0s - loss: 0.6228 - acc: 0.789116/25 [==================&gt;...........] - ETA: 0s - loss: 0.6086 - acc: 0.805720/25 [=======================&gt;......] - ETA: 0s - loss: 0.5892 - acc: 0.825824/25 [===========================&gt;..] - ETA: 0s - loss: 0.5650 - acc: 0.850925/25 [==============================] - 1s 21ms/step - loss: 0.5590 - acc: 0.8556 - val_loss: 0.3910 - val_acc: 0.9719 - lr: 0.0010</span></span>
223
<span><span class="co">## Epoch 3/4</span></span>
224
<span><span class="co">##  1/25 [&gt;.............................] - ETA: 0s - loss: 0.3548 - acc: 1.0000 4/25 [===&gt;..........................] - ETA: 0s - loss: 0.3463 - acc: 0.9883 8/25 [========&gt;.....................] - ETA: 0s - loss: 0.3230 - acc: 0.976611/25 [============&gt;.................] - ETA: 0s - loss: 0.3052 - acc: 0.975915/25 [=================&gt;............] - ETA: 0s - loss: 0.2893 - acc: 0.970817/25 [===================&gt;..........] - ETA: 0s - loss: 0.2792 - acc: 0.970621/25 [========================&gt;.....] - ETA: 0s - loss: 0.2665 - acc: 0.969524/25 [===========================&gt;..] - ETA: 0s - loss: 0.2547 - acc: 0.971425/25 [==============================] - 1s 21ms/step - loss: 0.2533 - acc: 0.9706 - val_loss: 0.1765 - val_acc: 0.9719 - lr: 0.0010</span></span>
225
<span><span class="co">## Epoch 4/4</span></span>
226
<span><span class="co">##  1/25 [&gt;.............................] - ETA: 0s - loss: 0.1369 - acc: 1.0000 4/25 [===&gt;..........................] - ETA: 0s - loss: 0.1456 - acc: 0.9922 7/25 [=======&gt;......................] - ETA: 0s - loss: 0.1494 - acc: 0.986610/25 [===========&gt;..................] - ETA: 0s - loss: 0.1425 - acc: 0.987514/25 [===============&gt;..............] - ETA: 0s - loss: 0.1376 - acc: 0.986617/25 [===================&gt;..........] - ETA: 0s - loss: 0.1315 - acc: 0.987121/25 [========================&gt;.....] - ETA: 0s - loss: 0.1259 - acc: 0.986625/25 [==============================] - ETA: 0s - loss: 0.1225 - acc: 0.985025/25 [==============================] - 1s 21ms/step - loss: 0.1225 - acc: 0.9850 - val_loss: 0.0992 - val_acc: 0.9812 - lr: 0.0010</span></span></code></pre>
227
<pre><code><span><span class="co">## Training done.</span></span></code></pre>
228
<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r">
229
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">hist</span><span class="op">)</span></span></code></pre></div>
230
<p><img src="getting_started_files/figure-html/unnamed-chunk-7-1.png" width="700"></p>
231
</div>
232
<div class="section level3">
233
<h3 id="evaluation">Evaluation<a class="anchor" aria-label="anchor" href="#evaluation"></a>
234
</h3>
235
<p>We can now evaluate the trained model on all the validation data</p>
236
<div class="sourceCode" id="cb9"><pre class="downlit sourceCode r">
237
<code class="sourceCode R"><span><span class="va">eval</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/evaluate_model.html">evaluate_model</a></span><span class="op">(</span>path_input <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="va">val_1_dir</span>, <span class="va">val_2_dir</span><span class="op">)</span>,</span>
238
<span>                       model <span class="op">=</span> <span class="va">model</span>,</span>
239
<span>                       batch_size <span class="op">=</span> <span class="fl">100</span>,</span>
240
<span>                       step <span class="op">=</span> <span class="fl">25</span>, <span class="co"># take a sample every 25 nt </span></span>
241
<span>                       vocabulary_label <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"high_gc"</span>, <span class="st">"equal_dist"</span><span class="op">)</span><span class="op">)</span>,</span>
242
<span>                       mode <span class="op">=</span> <span class="st">"label_folder"</span>,</span>
243
<span>                       evaluate_all_files <span class="op">=</span> <span class="cn">TRUE</span>,</span>
244
<span>                       verbose <span class="op">=</span> <span class="cn">FALSE</span>,</span>
245
<span>                       auc <span class="op">=</span> <span class="cn">TRUE</span>,</span>
246
<span>                       auprc <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></code></pre></div>
247
<pre><code><span><span class="co">## Evaluate 399 samples for class high_gc.</span></span>
248
<span><span class="co">## Evaluate 399 samples for class equal_dist.</span></span></code></pre>
249
<div class="sourceCode" id="cb11"><pre class="downlit sourceCode r">
250
<code class="sourceCode R"><span><span class="va">eval</span></span></code></pre></div>
251
<pre><code><span><span class="co">## [[1]]</span></span>
252
<span><span class="co">## [[1]]$confusion_matrix</span></span>
253
<span><span class="co">##             Truth</span></span>
254
<span><span class="co">## Prediction   high_gc equal_dist</span></span>
255
<span><span class="co">##   high_gc        383          5</span></span>
256
<span><span class="co">##   equal_dist      16        394</span></span>
257
<span><span class="co">## </span></span>
258
<span><span class="co">## [[1]]$accuracy</span></span>
259
<span><span class="co">## [1] 0.9736842</span></span>
260
<span><span class="co">## </span></span>
261
<span><span class="co">## [[1]]$categorical_crossentropy_loss</span></span>
262
<span><span class="co">## [1] 0.1157783</span></span>
263
<span><span class="co">## </span></span>
264
<span><span class="co">## [[1]]$AUC</span></span>
265
<span><span class="co">## [1] 0.9968593</span></span>
266
<span><span class="co">## </span></span>
267
<span><span class="co">## [[1]]$AUPRC</span></span>
268
<span><span class="co">## [1] 0.9968503</span></span></code></pre>
269
<p>We can check where our model made mistakes for the sequence with high
270
GC content.</p>
271
<div class="sourceCode" id="cb13"><pre class="downlit sourceCode r">
272
<code class="sourceCode R"><span><span class="va">high_gc_file</span> <span class="op">&lt;-</span> <span class="fu">microseq</span><span class="fu">::</span><span class="fu"><a href="https://rdrr.io/pkg/microseq/man/readFasta.html" class="external-link">readFasta</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.files.html" class="external-link">list.files</a></span><span class="op">(</span><span class="va">val_1_dir</span>, full.names <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span><span class="op">[</span><span class="fl">1</span><span class="op">]</span><span class="op">)</span></span>
273
<span><span class="va">high_gc_seq</span> <span class="op">&lt;-</span> <span class="va">high_gc_file</span><span class="op">$</span><span class="va">Sequence</span></span>
274
<span></span>
275
<span><span class="va">pred_high_gc</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/predict_model.html">predict_model</a></span><span class="op">(</span>model <span class="op">=</span> <span class="va">model</span>, </span>
276
<span>                              sequence <span class="op">=</span> <span class="va">high_gc_seq</span>,</span>
277
<span>                              filename <span class="op">=</span> <span class="cn">NULL</span>, </span>
278
<span>                              step <span class="op">=</span> <span class="fl">25</span>,</span>
279
<span>                              batch_size <span class="op">=</span> <span class="fl">512</span>,</span>
280
<span>                              verbose <span class="op">=</span> <span class="cn">TRUE</span>,</span>
281
<span>                              return_states <span class="op">=</span> <span class="cn">TRUE</span>,</span>
282
<span>                              mode <span class="op">=</span> <span class="st">"label"</span><span class="op">)</span></span></code></pre></div>
283
<pre><code><span><span class="co">## layer_name not specified. Using layer dense_1</span></span></code></pre>
284
<pre><code><span><span class="co">## Computing output for model at layer dense_1 </span></span>
285
<span><span class="co">## Model: "model_1"</span></span>
286
<span><span class="co">## ________________________________________________________________________________</span></span>
287
<span><span class="co">##  Layer (type)                       Output Shape                    Param #     </span></span>
288
<span><span class="co">## ================================================================================</span></span>
289
<span><span class="co">##  input_1 (InputLayer)               [(None, 50, 4)]                 0           </span></span>
290
<span><span class="co">##  lstm (LSTM)                        (None, 16)                      1344        </span></span>
291
<span><span class="co">##  dense (Dense)                      (None, 8)                       136         </span></span>
292
<span><span class="co">##  dense_1 (Dense)                    (None, 2)                       18          </span></span>
293
<span><span class="co">## ================================================================================</span></span>
294
<span><span class="co">## Total params: 1498 (5.85 KB)</span></span>
295
<span><span class="co">## Trainable params: 1498 (5.85 KB)</span></span>
296
<span><span class="co">## Non-trainable params: 0 (0.00 Byte)</span></span>
297
<span><span class="co">## ________________________________________________________________________________</span></span></code></pre>
298
<div class="sourceCode" id="cb16"><pre class="downlit sourceCode r">
299
<code class="sourceCode R"><span><span class="va">pred_df</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/cbind.html" class="external-link">cbind</a></span><span class="op">(</span><span class="va">pred_high_gc</span><span class="op">$</span><span class="va">states</span>, <span class="va">pred_high_gc</span><span class="op">$</span><span class="va">sample_end_position</span><span class="op">)</span> <span class="op"><a href="../reference/pipe.html">%&gt;%</a></span> </span>
300
<span>  <span class="fu"><a href="https://rdrr.io/r/base/as.data.frame.html" class="external-link">as.data.frame</a></span><span class="op">(</span><span class="op">)</span></span>
301
<span><span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="va">pred_df</span><span class="op">)</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"high_gc_conf"</span>, <span class="st">"equal_dist_conf"</span>, <span class="st">"sample_end_position"</span><span class="op">)</span></span>
302
<span><span class="fu"><a href="https://rdrr.io/r/utils/head.html" class="external-link">head</a></span><span class="op">(</span><span class="va">pred_df</span><span class="op">)</span></span></code></pre></div>
303
<pre><code><span><span class="co">##   high_gc_conf equal_dist_conf sample_end_position</span></span>
304
<span><span class="co">## 1    0.9330443      0.06695572                  50</span></span>
305
<span><span class="co">## 2    0.9602452      0.03975480                  75</span></span>
306
<span><span class="co">## 3    0.9642879      0.03571207                 100</span></span>
307
<span><span class="co">## 4    0.9596730      0.04032708                 125</span></span>
308
<span><span class="co">## 5    0.9617251      0.03827484                 150</span></span>
309
<span><span class="co">## 6    0.9666333      0.03336672                 175</span></span></code></pre>
310
<div class="sourceCode" id="cb18"><pre class="downlit sourceCode r">
311
<code class="sourceCode R"><span><span class="va">wrong_pred</span> <span class="op">&lt;-</span> <span class="va">pred_df</span> <span class="op"><a href="../reference/pipe.html">%&gt;%</a></span> <span class="fu">dplyr</span><span class="fu">::</span><span class="fu"><a href="https://dplyr.tidyverse.org/reference/filter.html" class="external-link">filter</a></span><span class="op">(</span><span class="va">high_gc_conf</span> <span class="op">&lt;</span> <span class="fl">0.5</span><span class="op">)</span></span>
312
<span><span class="va">wrong_pred</span></span></code></pre></div>
313
<pre><code><span><span class="co">##    high_gc_conf equal_dist_conf sample_end_position</span></span>
314
<span><span class="co">## 1    0.13769490       0.8623052                 675</span></span>
315
<span><span class="co">## 2    0.08829107       0.9117089                 800</span></span>
316
<span><span class="co">## 3    0.15268661       0.8473134                1150</span></span>
317
<span><span class="co">## 4    0.10348237       0.8965176                1475</span></span>
318
<span><span class="co">## 5    0.10325063       0.8967494                1950</span></span>
319
<span><span class="co">## 6    0.08819685       0.9118031                2700</span></span>
320
<span><span class="co">## 7    0.08648270       0.9135173                3000</span></span>
321
<span><span class="co">## 8    0.08025692       0.9197431                3700</span></span>
322
<span><span class="co">## 9    0.10362279       0.8963772                4675</span></span>
323
<span><span class="co">## 10   0.21332431       0.7866758                7550</span></span>
324
<span><span class="co">## 11   0.14129026       0.8587097                7875</span></span>
325
<span><span class="co">## 12   0.37184438       0.6281556                8200</span></span>
326
<span><span class="co">## 13   0.07818010       0.9218199                8225</span></span>
327
<span><span class="co">## 14   0.24804193       0.7519581                8425</span></span>
328
<span><span class="co">## 15   0.30556497       0.6944351                9900</span></span>
329
<span><span class="co">## 16   0.10370088       0.8962991                9925</span></span></code></pre>
330
<div class="sourceCode" id="cb20"><pre class="downlit sourceCode r">
331
<code class="sourceCode R"><span><span class="kw">if</span> <span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/nrow.html" class="external-link">nrow</a></span><span class="op">(</span><span class="va">wrong_pred</span><span class="op">)</span> <span class="op">==</span> <span class="fl">0</span><span class="op">)</span> <span class="op">{</span></span>
332
<span>  <span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="st">"All predictions for high GC content class correct"</span><span class="op">)</span></span>
333
<span><span class="op">}</span> <span class="kw">else</span> <span class="op">{</span></span>
334
<span>  </span>
335
<span>  <span class="co"># extract samples where model was wrong</span></span>
336
<span>  <span class="va">wrong_pred_seq</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/vector.html" class="external-link">vector</a></span><span class="op">(</span><span class="st">"character"</span>, <span class="fu"><a href="https://rdrr.io/r/base/nrow.html" class="external-link">nrow</a></span><span class="op">(</span><span class="va">wrong_pred</span><span class="op">)</span><span class="op">)</span></span>
337
<span>  <span class="kw">for</span> <span class="op">(</span><span class="va">i</span> <span class="kw">in</span> <span class="fl">1</span><span class="op">:</span><span class="fu"><a href="https://rdrr.io/r/base/length.html" class="external-link">length</a></span><span class="op">(</span><span class="va">wrong_pred_seq</span><span class="op">)</span><span class="op">)</span> <span class="op">{</span></span>
338
<span>    <span class="va">sample_end</span> <span class="op">&lt;-</span> <span class="va">wrong_pred</span><span class="op">$</span><span class="va">sample_end_position</span><span class="op">[</span><span class="va">i</span><span class="op">]</span></span>
339
<span>    <span class="va">sample_start</span> <span class="op">&lt;-</span> <span class="va">sample_end</span> <span class="op">-</span> <span class="va">maxlen</span> <span class="op">+</span> <span class="fl">1</span></span>
340
<span>    <span class="va">wrong_pred_seq</span><span class="op">[</span><span class="va">i</span><span class="op">]</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/substr.html" class="external-link">substr</a></span><span class="op">(</span><span class="va">high_gc_seq</span>, <span class="va">sample_start</span>, <span class="va">sample_end</span><span class="op">)</span></span>
341
<span>  <span class="op">}</span></span>
342
<span>  </span>
343
<span>  <span class="va">wrong_pred_seq</span></span>
344
<span><span class="op">}</span></span></code></pre></div>
345
<pre><code><span><span class="co">##  [1] "CTTAGAGACCTCGCCGCCACCGCCCGAGGTTCCGCTCCGGCGTCCCGCGG"</span></span>
346
<span><span class="co">##  [2] "CCCACTTCGTGTCTATGCCGGACACGCCTCGATAGGCGCAGGCGATGGGC"</span></span>
347
<span><span class="co">##  [3] "ACAGGAGAGACCCTCGGTTGCCGGCGACGCCGTGTCGTTGGTAGGCCCAC"</span></span>
348
<span><span class="co">##  [4] "GATAGCTCCACACCCACCTCAGCGTCCCGGGCCGCCGGCGTTCCGCCTGC"</span></span>
349
<span><span class="co">##  [5] "GCCCAACAAGGACGGTGAACTCCCCCGGGTACGGAAGAGGGTATGGCCGC"</span></span>
350
<span><span class="co">##  [6] "AGGAGTCCTCCTAGAGCTCATGGGTTGAGACGTGCCTCGACGCCCGACCT"</span></span>
351
<span><span class="co">##  [7] "CCCATTAGACCGTCCTGGCGGACACCCGTACGGGTGAGACCCTCCGGGTC"</span></span>
352
<span><span class="co">##  [8] "TGCTTATCATGGCCGCCCTGATGACGTGTCAGGGGGAGGACTGAGCGGGG"</span></span>
353
<span><span class="co">##  [9] "ATCCCGCATTCGCCGACGTCTCCACAGGAGGATCAGCGGGTCCGGGGCGA"</span></span>
354
<span><span class="co">## [10] "TTTGCGCCCCCTAAGGCACAGCCGCGACCCCAGGTTGGGAACCGCCGAAC"</span></span>
355
<span><span class="co">## [11] "CTACGGAACGTGGCTCCGAGCATCGGCGCATCGGCATGTGTCTGCCGGCG"</span></span>
356
<span><span class="co">## [12] "GTCGGGCGGAGCGCCACCACCGAGGGGCGGGCCCTTCAATTCTATAAGCG"</span></span>
357
<span><span class="co">## [13] "GGCGGGCCCTTCAATTCTATAAGCGACGCCGCCCTTGTCTGACGCTGGGC"</span></span>
358
<span><span class="co">## [14] "CACCCTATGTAGCCCCCTGCCTCGCCGGCCAGCCTGGGCTGATCGGGGCC"</span></span>
359
<span><span class="co">## [15] "TGGCCGTCGCGCTCCGGAGCCGTCACACCGGCGTACCTGTTATAAAGTCG"</span></span>
360
<span><span class="co">## [16] "CACCGGCGTACCTGTTATAAAGTCGCCCGCGCTCCCCCGGGCGCACCACG"</span></span></code></pre>
361
<p>We can check the nucleotide distribution of those sequences</p>
362
<div class="sourceCode" id="cb22"><pre class="downlit sourceCode r">
363
<code class="sourceCode R"><span><span class="va">l</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="op">)</span></span>
364
<span><span class="kw">for</span> <span class="op">(</span><span class="va">i</span> <span class="kw">in</span> <span class="fl">1</span><span class="op">:</span><span class="fu"><a href="https://rdrr.io/r/base/length.html" class="external-link">length</a></span><span class="op">(</span><span class="va">wrong_pred_seq</span><span class="op">)</span><span class="op">)</span> <span class="op">{</span></span>
365
<span>  <span class="va">l</span><span class="op">[[</span><span class="va">i</span><span class="op">]</span><span class="op">]</span> <span class="op">&lt;-</span> <span class="fu">stringr</span><span class="fu">::</span><span class="fu"><a href="https://stringr.tidyverse.org/reference/str_split.html" class="external-link">str_split</a></span><span class="op">(</span><span class="va">wrong_pred_seq</span><span class="op">[</span><span class="va">i</span><span class="op">]</span>, <span class="st">""</span><span class="op">)</span> <span class="op"><a href="../reference/pipe.html">%&gt;%</a></span> <span class="fu"><a href="https://rdrr.io/r/base/table.html" class="external-link">table</a></span><span class="op">(</span><span class="op">)</span> <span class="op"><a href="../reference/pipe.html">%&gt;%</a></span> <span class="fu"><a href="https://rdrr.io/r/base/proportions.html" class="external-link">prop.table</a></span><span class="op">(</span><span class="op">)</span> <span class="op"><a href="../reference/pipe.html">%&gt;%</a></span> <span class="fu"><a href="https://rdrr.io/r/base/t.html" class="external-link">t</a></span><span class="op">(</span><span class="op">)</span> <span class="op"><a href="../reference/pipe.html">%&gt;%</a></span> <span class="fu"><a href="https://rdrr.io/r/base/matrix.html" class="external-link">as.matrix</a></span><span class="op">(</span><span class="op">)</span></span>
366
<span><span class="op">}</span></span>
367
<span><span class="va">dist_matrix</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/do.call.html" class="external-link">do.call</a></span><span class="op">(</span><span class="va">rbind</span>, <span class="va">l</span><span class="op">)</span></span>
368
<span><span class="va">dist_matrix</span></span></code></pre></div>
369
<pre><code><span><span class="co">##          A    C    G    T</span></span>
370
<span><span class="co">##  [1,] 0.10 0.46 0.30 0.14</span></span>
371
<span><span class="co">##  [2,] 0.16 0.34 0.32 0.18</span></span>
372
<span><span class="co">##  [3,] 0.16 0.32 0.36 0.16</span></span>
373
<span><span class="co">##  [4,] 0.12 0.48 0.26 0.14</span></span>
374
<span><span class="co">##  [5,] 0.24 0.30 0.36 0.10</span></span>
375
<span><span class="co">##  [6,] 0.18 0.32 0.30 0.20</span></span>
376
<span><span class="co">##  [7,] 0.16 0.38 0.30 0.16</span></span>
377
<span><span class="co">##  [8,] 0.16 0.22 0.42 0.20</span></span>
378
<span><span class="co">##  [9,] 0.18 0.34 0.34 0.14</span></span>
379
<span><span class="co">## [10,] 0.20 0.40 0.28 0.12</span></span>
380
<span><span class="co">## [11,] 0.14 0.32 0.36 0.18</span></span>
381
<span><span class="co">## [12,] 0.18 0.32 0.36 0.14</span></span>
382
<span><span class="co">## [13,] 0.14 0.34 0.30 0.22</span></span>
383
<span><span class="co">## [14,] 0.10 0.44 0.30 0.16</span></span>
384
<span><span class="co">## [15,] 0.16 0.34 0.30 0.20</span></span>
385
<span><span class="co">## [16,] 0.16 0.44 0.26 0.14</span></span></code></pre>
386
<div class="sourceCode" id="cb24"><pre class="downlit sourceCode r">
387
<code class="sourceCode R"><span><span class="va">df</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span>distribution <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/vector.html" class="external-link">as.vector</a></span><span class="op">(</span><span class="va">dist_matrix</span><span class="op">)</span>,</span>
388
<span>                 nt <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/factor.html" class="external-link">factor</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/rep.html" class="external-link">rep</a></span><span class="op">(</span><span class="va">vocabulary</span>, each <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/nrow.html" class="external-link">nrow</a></span><span class="op">(</span><span class="va">dist_matrix</span><span class="op">)</span><span class="op">)</span><span class="op">)</span>,</span>
389
<span>                 sample_id <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/rep.html" class="external-link">rep</a></span><span class="op">(</span><span class="fl">1</span><span class="op">:</span><span class="fu"><a href="https://rdrr.io/r/base/nrow.html" class="external-link">nrow</a></span><span class="op">(</span><span class="va">dist_matrix</span><span class="op">)</span>, <span class="fl">4</span><span class="op">)</span><span class="op">)</span></span>
390
<span></span>
391
<span><span class="fu">ggplot</span><span class="op">(</span><span class="va">df</span>, <span class="fu">aes</span><span class="op">(</span>fill<span class="op">=</span><span class="va">nt</span>, y<span class="op">=</span><span class="va">distribution</span>, x<span class="op">=</span><span class="va">nt</span><span class="op">)</span><span class="op">)</span> <span class="op">+</span> </span>
392
<span>    <span class="fu">geom_bar</span><span class="op">(</span>position<span class="op">=</span><span class="st">"dodge"</span>, stat<span class="op">=</span><span class="st">"identity"</span><span class="op">)</span>  <span class="op">+</span> <span class="fu">facet_wrap</span><span class="op">(</span><span class="op">~</span><span class="va">sample_id</span><span class="op">)</span></span></code></pre></div>
393
<p><img src="getting_started_files/figure-html/unnamed-chunk-10-1.png" width="700"></p>
394
<p>Finally, we may want to aggregate all predictions, we made for the
395
sequence. We can do this using the <code>summarize_states</code>
396
function. The function returns the mean confidence, the maximum
397
prediction and the vote percentages (percentage of predictions per
398
class).</p>
399
<div class="sourceCode" id="cb25"><pre class="downlit sourceCode r">
400
<code class="sourceCode R"><span><span class="va">label_names</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"high_gc"</span>, <span class="st">"equal_dist"</span><span class="op">)</span></span>
401
<span><span class="va">pred_summary</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/summarize_states.html">summarize_states</a></span><span class="op">(</span>label_names <span class="op">=</span> <span class="va">label_names</span>, df <span class="op">=</span> <span class="va">pred_df</span><span class="op">[</span>, <span class="fl">1</span><span class="op">:</span><span class="fl">2</span><span class="op">]</span><span class="op">)</span></span>
402
<span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">pred_summary</span><span class="op">)</span></span></code></pre></div>
403
<pre><code><span><span class="co">##    file_name mean_conf_high_gc mean_conf_equal_dist max_conf_high_gc</span></span>
404
<span><span class="co">##       &lt;lgcl&gt;             &lt;num&gt;                &lt;num&gt;            &lt;num&gt;</span></span>
405
<span><span class="co">## 1:        NA         0.9148641           0.08513589        0.9714182</span></span>
406
<span><span class="co">##    max_conf_equal_dist vote_perc_high_gc vote_perc_equal_dist mean_prediction</span></span>
407
<span><span class="co">##                  &lt;num&gt;             &lt;num&gt;                &lt;num&gt;          &lt;char&gt;</span></span>
408
<span><span class="co">## 1:           0.9218199         0.9598997           0.04010025         high_gc</span></span>
409
<span><span class="co">##    max_prediction vote_prediction num_prediction</span></span>
410
<span><span class="co">##            &lt;char&gt;          &lt;char&gt;          &lt;int&gt;</span></span>
411
<span><span class="co">## 1:        high_gc         high_gc            399</span></span></code></pre>
412
</div>
413
</div>
414
  </main><aside class="col-md-3"><nav id="toc"><h2>On this page</h2>
415
    </nav></aside>
416
</div>
417
418
419
420
    <footer><div class="pkgdown-footer-left">
421
  <p>Developed by Philipp Münch, René Mreches, Martin Binder, Hüseyin Anil Gündüz, Xiao-Yin To, Alice McHardy.</p>
422
</div>
423
424
<div class="pkgdown-footer-right">
425
  <p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.9.</p>
426
</div>
427
428
    </footer>
429
</div>
430
431
  
432
433
  
434
435
  </body>
436
</html>