Diff of /R/train.R [000000] .. [409433]

Switch to side-by-side view

--- a
+++ b/R/train.R
@@ -0,0 +1,857 @@
+#' @title Train neural network on genomic data
+#'
+#' @description
+#' Train a neural network on genomic data. Data can be fasta/fastq files, rds files or a prepared data set.
+#' If the data is given as collection of fasta, fastq or rds files, function will create a data generator that extracts training and validation batches
+#' from files. Function includes several options to determine the sampling strategy of the generator and preprocessing of the data.  
+#' Training progress can be visualized in tensorboard. Model weights can be stored during training using checkpoints.        
+#' 
+#' @inheritParams generator_fasta_lm
+#' @inheritParams generator_fasta_label_folder
+#' @inheritParams generator_fasta_label_header_csv
+#' @inheritParams get_generator 
+#' @param train_type Either `"lm"`, `"lm_rds"`, `"masked_lm"` for language model; `"label_header"`, `"label_folder"`, `"label_csv"`, `"label_rds"` for classification or `"dummy_gen"`.
+#' \itemize{
+#' \item Language model is trained to predict character(s) in a sequence. \cr
+#' \item `"label_header"`/`"label_folder"`/`"label_csv"` are trained to predict a corresponding class given a sequence as input.
+#' \item If `"label_header"`, class will be read from fasta headers.
+#' \item If `"label_folder"`, class will be read from folder, i.e. all files in one folder must belong to the same class. 
+#' \item If `"label_csv"`, targets are read from a csv file. This file should have one column named "file". The targets then correspond to entries in that row (except "file"
+#' column). Example: if we are currently working with a file called "a.fasta" and corresponding label is "label_1", there should be a row in our csv file  
+#' 
+#'  |  file       | label_1 | label_2 | 
+#'  |   ---       |   ---   |  ---    |   
+#'  | "a.fasta"   |    1    |    0    |
+#'
+#' \item If `"label_rds"`, generator will iterate over set of .rds files containing each a list of input and target tensors. Not implemented for model
+#' with multiple inputs. 
+#' \item If `"lm_rds"`, generator will iterate over set of .rds files and will split tensor according to `target_len` argument
+#' (targets are last `target_len` nucleotides of each sequence). 
+#' \item  If `"dummy_gen"`, generator creates random data once and repeatedly feeds these to model.
+#' \item  If `"masked_lm"`, generator maskes some parts of the input. See `masked_lm` argument for details.
+#' }
+#' @param model A keras model.
+#' @param path Path to training data. If \code{train_type} is \code{label_folder}, should be a vector or list
+#' where each entry corresponds to a class (list elements can be directories and/or individual files). If \code{train_type} is not \code{label_folder}, 
+#' can be a single directory or file or a list of directories and/or files.
+#' @param path_val Path to validation data. See `path` argument for details.
+#' @param dataset List of training data holding training samples in RAM instead of using generator. Should be list with two entries called `"X"` and `"Y"`.
+#' @param dataset_val List of validation data. Should have two entries called `"X"` and `"Y"`.
+#' @param path_checkpoint Path to checkpoints folder or `NULL`. If `NULL`, checkpoints don't get stored.
+#' @param path_log Path to directory to write training scores. File name is `run_name` + `".csv"`. No output if `NULL`.
+#' @param train_val_ratio For generator defines the fraction of batches that will be used for validation (compared to size of training data), i.e. one validation iteration
+#' processes \code{batch_size} \eqn{*} \code{steps_per_epoch} \eqn{*} \code{train_val_ratio} samples. If you use dataset instead of generator and \code{dataset_val} is `NULL`, splits \code{dataset}
+#' into train/validation data.
+#' @param run_name Name of the run. Name will be used to identify output from callbacks. If `NULL`, will use date as run name. 
+#' If name already present, will add `"_2"` to name or `"_{x+1}"` if name ends with `_x`, where `x` is some integer. 
+#' @param batch_size Number of samples used for one network update.
+#' @param epochs Number of iterations.
+#' @param max_queue_size Maximum size for the generator queue.
+#' @param reduce_lr_on_plateau Whether to use learning rate scheduler.
+#' @param lr_plateau_factor Factor of decreasing learning rate when plateau is reached.
+#' @param patience Number of epochs waiting for decrease in validation loss before reducing learning rate.
+#' @param cooldown Number of epochs without changing learning rate.
+#' @param steps_per_epoch Number of training batches per epoch.
+#' @param step Frequency of sampling steps.
+#' @param shuffle_file_order Boolean, whether to go through files sequentially or shuffle beforehand.
+#' @param vocabulary Vector of allowed characters. Characters outside vocabulary get encoded as specified in \code{ambiguous_nuc}.
+#' @param initial_epoch Epoch at which to start training. Note that network
+#' will run for (\code{epochs} - \code{initial_epochs}) rounds and not \code{epochs} rounds.
+#' @param path_tensorboard Path to tensorboard directory or `NULL`. If `NULL`, training not tracked on tensorboard.
+#' @param save_best_only Only save model that improved on some score. Not applied if argument is `NULL`. Otherwise must be 
+#' list with argument `monitor` or `save_freq` (can only use one option). `moniter` specifies what metric to use. 
+#' `save_freq`, integer specifying how often to store a checkpoint (in epochs).
+#' @param save_weights_only Whether to save weights only.
+#' @param seed Sets seed for reproducible results.
+#' @param shuffle_input Whether to shuffle entries in file.
+#' @param tb_images Whether to show custom images (confusion matrix) in tensorboard "IMAGES" tab.
+#' @param format File format, `"fasta"`, `"fastq"`, `"rds"` or `"fasta.tar.gz"`, `"fastq.tar.gz"` for `tar.gz` files. 
+#' @param path_file_log Write name of files used for training to csv file if path is specified.
+#' @param vocabulary_label Character vector of possible targets. Targets outside \code{vocabulary_label} will get discarded if
+#' \code{train_type = "label_header"}.
+#' @param file_limit Integer or `NULL`. If integer, use only specified number of randomly sampled files for training. Ignored if greater than number of files in \code{path}.
+#' @param reverse_complement_encoding Whether to use both original sequence and reverse complement as two input sequences.
+#' @param output_format Determines shape of output tensor for language model.
+#' Either `"target_right"`, `"target_middle_lstm"`, `"target_middle_cnn"` or `"wavenet"`.
+#' Assume a sequence `"AACCGTA"`. Output correspond as follows
+#' \itemize{
+#' \item `"target_right": X = "AACCGT", Y = "A"`
+#' \item `"target_middle_lstm": X = (X_1 = "AAC", X_2 = "ATG"), Y = "C"` (note reversed order of X_2)
+#' \item `"target_middle_cnn": X = "AACGTA", Y = "C"` 
+#' \item `"wavenet": X = "AACCGT", Y = "ACCGTA"`
+#' }
+#' @param reset_states Whether to reset hidden states of RNN layer at every new input file and before/after validation.
+#' @param use_quality_score Whether to use fastq quality scores. If `TRUE` input is not one-hot-encoding but corresponds to probabilities.
+#' For example (0.97, 0.01, 0.01, 0.01) instead of (1, 0, 0, 0).
+#' @param padding Whether to pad sequences too short for one sample with zeros.
+#' @param early_stopping_time Time in seconds after which to stop training.
+#' @param validation_only_after_training Whether to skip validation during training and only do one validation iteration after training.
+#' @param skip_amb_nuc Threshold of ambiguous nucleotides to accept in fasta entry. Complete entry will get discarded otherwise.
+#' @param class_weight List of weights for output. Order should correspond to \code{vocabulary_label}.
+#' You can use \code{\link{get_class_weight}} function to estimate class weights:
+#' 
+#' \code{class_weights <- get_class_weights(path = path, train_type = train_type)}
+#' 
+#' If \code{train_type = "label_csv"} you need to add path to csv file:
+#' 
+#' \code{class_weights <- get_class_weights(path = path, train_type = train_type, csv_path = target_from_csv)}
+#' @param print_scores Whether to print train/validation scores during training.
+#' @param train_val_split_csv A csv file specifying train/validation split. csv file should contain one column named `"file"` and one column named
+#' `"type"`. The `"file"` column contains names of fasta/fastq files and `"type"` column specifies if file is used for training or validation.
+#' Entries in `"type"` must be named `"train"` or `"val"`, otherwise file will not be used for either. `path` and `path_val` arguments should be the same.
+#' Not implemented for `train_type = "label_folder"`.
+#' @param set_learning When you want to assign one label to set of samples. Only implemented for `train_type = "label_folder"`.
+#' Input is a list with the following parameters 
+#' \itemize{
+#' \item `samples_per_target`: how many samples to use for one target.
+#' \item `maxlen`: length of one sample.
+#' \item `reshape_mode`: `"time_dist", "multi_input"` or `"concat"`. 
+#' \itemize{
+#' \item
+#'  If `reshape_mode` is `"multi_input"`, generator will produce `samples_per_target` separate inputs, each of length `maxlen` (model should have
+#' `samples_per_target` input layers).
+#' \item If reshape_mode is `"time_dist"`, generator will produce a 4D input array. The dimensions correspond to
+#' `(batch_size, samples_per_target, maxlen, length(vocabulary))`.
+#' \item If `reshape_mode` is `"concat"`, generator will concatenate `samples_per_target` sequences
+#' of length `maxlen` to one long sequence.
+#' }
+#' \item If `reshape_mode` is `"concat"`, there is an additional `buffer_len`
+#' argument. If `buffer_len` is an integer, the subsequences are interspaced with `buffer_len` rows. The input length is
+#' (`maxlen` \eqn{*} `samples_per_target`) + `buffer_len` \eqn{*} (`samples_per_target` - 1).
+#' }
+#' @param random_sampling Whether samples should be taken from random positions when using `max_samples` argument. If `FALSE` random 
+#' samples are taken from a consecutive subsequence.
+#' @param n_gram_stride Step size for n-gram encoding. For AACCGGTT with `n_gram = 4` and `n_gram_stride = 2`, generator encodes
+#' `(AACC), (CCGG), (GGTT)`; for `n_gram_stride = 4` generator encodes `(AACC), (GGTT)`.
+#' @param callback_list Add additional callbacks to `keras::fit` call.  
+#' @param model_card List of arguments for training parameters of training run. Must contain at least an entry `path_model_card`, i.e. the 
+#' directory where parameters are stored. List can contain additional (optional) arguments, for example 
+#' `model_card = list(path_model_card = "/path/to/logs", description = "transfer learning with BERT model on virus data", ...)`  
+#' @param return_gen Whether to return the train and validation generators (instead of training).
+#' @examplesIf reticulate::py_module_available("tensorflow")
+#' # create dummy data
+#' path_train_1 <- tempfile()
+#' path_train_2 <- tempfile()
+#' path_val_1 <- tempfile()
+#' path_val_2 <- tempfile()
+#' 
+#' for (current_path in c(path_train_1, path_train_2,
+#'                        path_val_1, path_val_2)) {
+#'   dir.create(current_path)
+#'   create_dummy_data(file_path = current_path,
+#'                     num_files = 3,
+#'                     seq_length = 10,
+#'                     num_seq = 5,
+#'                     vocabulary = c("a", "c", "g", "t"))
+#' }
+#' 
+#' # create model
+#' model <- create_model_lstm_cnn(layer_lstm = 8, layer_dense = 2, maxlen = 5)
+#' 
+#' # train model
+#' hist <- train_model(train_type = "label_folder",
+#'                     model = model,
+#'                     path = c(path_train_1, path_train_2),
+#'                     path_val = c(path_val_1, path_val_2),
+#'                     batch_size = 8,
+#'                     epochs = 3,
+#'                     steps_per_epoch = 6,
+#'                     step = 5,
+#'                     format = "fasta",
+#'                     vocabulary_label = c("label_1", "label_2"))
+#'  
+#' @returns A list of training metrics.  
+#' @export
+train_model <- function(model = NULL,
+                        dataset = NULL,
+                        dataset_val = NULL,
+                        # training args
+                        train_val_ratio = 0.2,
+                        run_name = "run_1",
+                        initial_epoch = 0,
+                        class_weight = NULL,
+                        print_scores = TRUE,
+                        epochs = 10,
+                        max_queue_size = 100,
+                        steps_per_epoch = 1000,
+                        # callbacks
+                        path_checkpoint = NULL,
+                        path_tensorboard = NULL,
+                        path_log = NULL,
+                        save_best_only = NULL, 
+                        save_weights_only = FALSE,
+                        tb_images = FALSE,
+                        path_file_log = NULL,
+                        reset_states = FALSE,
+                        early_stopping_time = NULL,
+                        validation_only_after_training = FALSE,
+                        train_val_split_csv = NULL,
+                        reduce_lr_on_plateau = TRUE,
+                        lr_plateau_factor = 0.9,
+                        patience = 20,
+                        cooldown = 1,
+                        model_card = NULL,
+                        callback_list = NULL,
+                        # generator args
+                        train_type = "label_folder",
+                        path = NULL,
+                        path_val = NULL,
+                        batch_size = 64,
+                        step = NULL,
+                        shuffle_file_order = TRUE,
+                        vocabulary = c("a", "c", "g", "t"),
+                        format = "fasta",
+                        ambiguous_nuc = "zero",
+                        seed = c(1234, 4321),
+                        file_limit = NULL,
+                        use_coverage = NULL,
+                        set_learning = NULL,
+                        proportion_entries = NULL,
+                        sample_by_file_size = FALSE,
+                        n_gram = NULL,
+                        n_gram_stride = 1,
+                        masked_lm = NULL,
+                        random_sampling = FALSE,
+                        add_noise = NULL,
+                        return_int = FALSE,
+                        maxlen = NULL,
+                        reverse_complement = FALSE,
+                        reverse_complement_encoding = FALSE,
+                        output_format = "target_right",
+                        proportion_per_seq = NULL,
+                        read_data = FALSE,
+                        use_quality_score = FALSE,
+                        padding = FALSE,
+                        concat_seq = NULL,
+                        target_len = 1,
+                        skip_amb_nuc = NULL,
+                        max_samples = NULL,
+                        added_label_path = NULL,
+                        add_input_as_seq = NULL,
+                        target_from_csv = NULL,
+                        target_split = NULL,
+                        shuffle_input = TRUE,
+                        vocabulary_label = NULL,
+                        delete_used_files = FALSE,
+                        reshape_xy = NULL,
+                        return_gen = FALSE) {
+  
+  if (!is.null(model_card)) {
+    if (!is.list(model_card)) {
+      stop("model_card must be a list and contain at least an entry called 'path_model_card'")
+    }
+  }
+  
+  # initialize metrics, temporary fix
+  model <- manage_metrics(model)
+  
+  run_name <- get_run_name(run_name, path_tensorboard, path_checkpoint, path_log,
+                           path_model_card = model_card$path_model_card,
+                           auto_extend = TRUE)
+  train_with_gen <- is.null(dataset)
+  output <- list(tensorboard = FALSE, checkpoints = FALSE)
+  if (!is.null(path_tensorboard)) output$tensorboard <- TRUE
+  if (!is.null(path_checkpoint)) output$checkpoints <- TRUE
+  wavenet_format <- FALSE ; target_middle <- FALSE ; cnn_format <- FALSE
+  if (train_type != "label_csv") target_from_csv <- NULL
+  
+  if (train_with_gen) {
+    stopifnot(train_type %in% c("lm", "label_header", "label_folder", "label_csv", "label_rds", "lm_rds", "dummy_gen", "masked_lm"))
+    stopifnot(ambiguous_nuc %in% c("zero", "equal", "discard", "empirical"))
+    stopifnot(length(vocabulary) == length(unique(vocabulary)))
+    stopifnot(length(vocabulary_label) == length(unique(vocabulary_label)))
+    labelByFolder <- FALSE
+    labelGen <- ifelse(train_type == "lm", FALSE, TRUE)
+    
+    if (train_type == "label_header") target_from_csv <- NULL
+    if (train_type == "label_csv") {
+      #train_type <- "label_header"
+      if (is.null(target_from_csv)) {
+        stop('You need to add a path to csv file for target_from_csv when using train_type = "label_csv"')
+      }
+      if (!is.null(vocabulary_label)) {
+        message("Reading vocabulary_label from csv header")
+        if (!is.data.frame(target_from_csv)) {
+          output_label_csv <- utils::read.csv2(target_from_csv, header = TRUE, stringsAsFactors = FALSE)
+          if (dim(output_label_csv)[2] == 1) {
+            output_label_csv <- utils::read.csv(target_from_csv, header = TRUE, stringsAsFactors = FALSE)
+          }
+        } else {
+          output_label_csv <- target_from_csv
+        }
+        vocabulary_label <- names(output_label_csv)
+        vocabulary_label <- vocabulary_label[vocabulary_label != "file"]
+      }
+    }
+    
+    if (!is.null(skip_amb_nuc)) {
+      if((skip_amb_nuc > 1) | (skip_amb_nuc <0)) {
+        stop("skip_amb_nuc should be between 0 and 1 or NULL")
+      }
+    }
+    
+    if (!is.null(proportion_per_seq)) {
+      if(any(proportion_per_seq > 1) | any(proportion_per_seq  < 0)) {
+        stop("proportion_per_seq should be between 0 and 1 or NULL")
+      }
+    }
+    
+    # TODO: adjust for multi output model
+    # if (!is.null(class_weight) && (length(class_weight) != length(vocabulary_label))) {
+    #   stop("class_weight and vocabulary_label must have same length")
+    # }
+    
+    if (!is.null(concat_seq)) {
+      if (!is.null(use_coverage)) stop("Coverage encoding not implemented for concat_seq")
+    }
+    
+    # train train_val_ratio via csv file
+    if (!is.null(train_val_split_csv)) {
+      
+      train_val_file <- utils::read.csv2(train_val_split_csv, header = TRUE, stringsAsFactors = FALSE)
+      
+      if (is.null(path)) {
+        path <- train_val_file %>% dplyr::filter(type %in% c("train", "val", "validation")) %>% 
+          dplyr::select(file) %>% as.list()
+      }
+      
+      if (train_type == "label_folder") {
+        stop('train_val_split_csv not implemented for train_type = "label_folder"')
+      }
+      if (is.null(path_val)) {
+        path_val <- path
+      } else {
+        if (!all(unlist(path_val) %in% unlist(path))) {
+          warning("Train/validation split done via file in train_val_split_csv. Only using files from path argument.")
+        }
+        path_val <- path
+      }
+      
+      if (dim(train_val_file)[2] == 1) {
+        train_val_file <- utils::read.csv(train_val_split_csv, header = TRUE, stringsAsFactors = FALSE)
+      }
+      train_val_file <- dplyr::distinct(train_val_file)
+      
+      if (!all(c("file", "type") %in% names(train_val_file))) {
+        stop("Column names of train_val_split_csv file must be 'file' and 'type'")
+      }
+      
+      if (length(train_val_file$file) != length(unique(train_val_file$file))) {
+        stop("In train_val_split_csv all entires in 'file' column must be unique")
+      }
+      
+      train_files <- train_val_file %>% dplyr::filter(type == "train")
+      train_files <- as.character(train_files$file)
+      val_files <- train_val_file %>% dplyr::filter(type == "val" | type == "validation")
+      val_files <- as.character(val_files$file)
+    } else {
+      train_files <- NULL
+      val_files <- NULL
+    }
+    
+    if (train_type == "lm") {
+      stopifnot(output_format %in% c("target_right", "target_middle_lstm", "target_middle_cnn", "wavenet"))
+      if (output_format == "target_middle_lstm") target_middle <- TRUE
+      if (output_format == "target_middle_cnn") cnn_format <- TRUE
+      if (output_format == "wavenet") wavenet_format <- TRUE
+    }
+    
+    if (train_type == "label_header" & is.null(target_from_csv)) {
+      stopifnot(!is.null(vocabulary_label))
+    }
+    
+    if (train_type == "label_folder") {
+      labelByFolder <- TRUE
+      stopifnot(!is.null(vocabulary_label))
+      stopifnot(length(path) == length(vocabulary_label))
+    }
+    
+  }
+  
+  model_weights <- model$get_weights()
+  
+  # function arguments
+  argumentList <- as.list(match.call(expand.dots=FALSE))
+  #argumentList <- c(as.list(environment()), list(...)) log default args too
+  argumentList <- argumentList[names(argumentList) != ""]
+  argumentList <- lapply(argumentList, eval, envir = parent.frame())
+  
+  # extract maxlen from model
+  if (is.null(maxlen)) {
+    maxlen <- get_maxlen(model, set_learning, target_middle, read_data)
+  }
+  
+  if (is.null(step)) step <- maxlen
+  vocabulary_label_size <- length(vocabulary_label)
+  vocabulary_size <- length(vocabulary)
+  
+  if (is.null(dataset) && labelByFolder) {
+    if (length(path) == 1) warning("Training with just one label")
+  }
+  
+  # add empty hparam dict if non exists
+  if (!reticulate::py_has_attr(model, "hparam")) {
+    model$hparam <- reticulate::dict()
+  }
+  
+  # tempory file to log training data
+  removeLog <- FALSE
+  if (is.null(path_file_log)) {
+    removeLog <- TRUE
+    path_file_log <- tempfile(pattern = "", fileext = ".csv")
+  } else {
+    if (!endsWith(path_file_log, ".csv")) path_file_log <- paste0(path_file_log, ".csv")
+    #path_file_logVal <- tempfile(pattern = "", fileext = ".csv")
+  }
+  if (reset_states) {
+    path_file_logVal <- tempfile(pattern = "", fileext = ".csv")
+  } else {
+    path_file_logVal <- NULL
+  }
+  
+  # if no dataset is supplied, external fasta generator will generate batches
+  if (train_with_gen) {
+    #message("Starting fasta generator...")
+    
+    gen <- get_generator(path = path, batch_size = batch_size, model = model,
+                         maxlen = maxlen, step = step, shuffle_file_order = shuffle_file_order,
+                         vocabulary = vocabulary, seed = seed[1], proportion_entries = proportion_entries,
+                         shuffle_input = shuffle_input, format = format, reshape_xy = reshape_xy,
+                         path_file_log = path_file_log, reverse_complement = reverse_complement, n_gram_stride = n_gram_stride,
+                         output_format = output_format, ambiguous_nuc = ambiguous_nuc,
+                         proportion_per_seq = proportion_per_seq, skip_amb_nuc = skip_amb_nuc,
+                         use_quality_score = use_quality_score, padding = padding, n_gram = n_gram,
+                         added_label_path = added_label_path, add_input_as_seq = add_input_as_seq,
+                         max_samples = max_samples, concat_seq = concat_seq, target_len = target_len,
+                         file_filter = train_files, use_coverage = use_coverage, random_sampling = random_sampling,
+                         train_type = train_type, set_learning = set_learning, file_limit = file_limit,
+                         reverse_complement_encoding = reverse_complement_encoding, read_data = read_data,
+                         sample_by_file_size = sample_by_file_size, add_noise = add_noise, target_split = target_split,
+                         target_from_csv = target_from_csv, masked_lm = masked_lm, return_int = return_int,
+                         path_file_logVal = path_file_logVal, delete_used_files = delete_used_files,
+                         vocabulary_label = vocabulary_label, val = FALSE)
+    
+    if (!is.null(path_val)) {
+      
+      gen.val <- get_generator(path = path_val, batch_size = batch_size, model = model,
+                               maxlen = maxlen, step = step, shuffle_file_order = shuffle_file_order,
+                               vocabulary = vocabulary, seed = seed[2], proportion_entries = proportion_entries,
+                               shuffle_input = shuffle_input, format = format, delete_used_files = FALSE,
+                               path_file_log = path_file_logVal, reverse_complement = reverse_complement, n_gram_stride = n_gram_stride,
+                               output_format = output_format, ambiguous_nuc = ambiguous_nuc, reshape_xy = reshape_xy,
+                               proportion_per_seq = proportion_per_seq, skip_amb_nuc = skip_amb_nuc,
+                               use_quality_score = use_quality_score, padding = padding, n_gram = n_gram,
+                               added_label_path = added_label_path, add_input_as_seq = add_input_as_seq,
+                               max_samples = max_samples, concat_seq = concat_seq, target_len = target_len,
+                               file_filter = val_files, use_coverage = use_coverage, random_sampling = random_sampling,
+                               train_type = train_type, set_learning = set_learning, file_limit = file_limit,
+                               reverse_complement_encoding = reverse_complement_encoding, read_data = read_data,
+                               sample_by_file_size = sample_by_file_size, add_noise = add_noise, target_split = target_split,
+                               target_from_csv = target_from_csv, masked_lm = masked_lm, return_int = return_int,
+                               path_file_logVal = path_file_logVal, vocabulary_label = vocabulary_label,
+                               val = TRUE)
+    } else {
+      gen.val <- NULL
+    }
+    
+  }
+  
+  # skip validation callback
+  if (validation_only_after_training | is.null(train_val_ratio) || train_val_ratio == 0) {
+    validation_data <- NULL
+  } else {
+    if (train_with_gen) {
+      if (is.null(path_val)) {
+        validation_data <- NULL
+      } else {
+        validation_data <- gen.val
+      } 
+    } else {
+      validation_data <- dataset_val
+    }
+  }
+  
+  if (is.null(validation_data)) {
+    validation_steps <- NULL
+  } else {
+    validation_steps <- ceiling(steps_per_epoch * train_val_ratio)
+  }
+  
+  callbacks <- get_callbacks(default_arguments = NULL, model = model, path_tensorboard = path_tensorboard, run_name = run_name, train_type = train_type,
+                             path = path, train_val_ratio = train_val_ratio, batch_size = batch_size, epochs = epochs,
+                             max_queue_size = max_queue_size, lr_plateau_factor = lr_plateau_factor, patience = patience, cooldown = cooldown, format = format,
+                             steps_per_epoch = steps_per_epoch, step = step, shuffle_file_order = shuffle_file_order, initial_epoch = initial_epoch, vocabulary = vocabulary,
+                             learning_rate =  model$optimizer$learning_rate$numpy(), solver = stringr::str_to_lower(model$optimizer$get_config()["name"]),
+                             shuffle_input = shuffle_input, vocabulary_label = vocabulary_label, 
+                             file_limit = file_limit, reverse_complement = reverse_complement, wavenet_format = wavenet_format,  cnn_format = cnn_format,
+                             train_val_split_csv = train_val_split_csv, n_gram = n_gram, path_file_logVal = path_file_logVal, validation_steps = validation_steps,
+                             create_model_function = NULL, vocabulary_size = vocabulary_size, gen_cb = NULL, argumentList = argumentList, output = output,
+                             maxlen = maxlen, labelGen = labelGen, labelByFolder = labelByFolder, vocabulary_label_size = vocabulary_label_size, tb_images = tb_images,
+                             target_middle = target_middle, path_file_log = path_file_log, proportion_per_seq = proportion_per_seq,
+                             skip_amb_nuc = skip_amb_nuc, max_samples = max_samples, proportion_entries = proportion_entries, path_log = path_log,
+                             train_with_gen = train_with_gen, random_sampling = random_sampling, reduce_lr_on_plateau = reduce_lr_on_plateau,
+                             save_weights_only = save_weights_only, path_checkpoint = path_checkpoint, save_best_only = save_best_only, gen.val = gen.val,
+                             target_from_csv = target_from_csv, reset_states = reset_states, early_stopping_time = early_stopping_time,
+                             validation_only_after_training = validation_only_after_training, model_card = model_card, dataset_val = dataset_val)
+  
+  # training
+  if (train_with_gen) {
+    
+    if (!is.null(dataset_val)) {
+      validation_data <- dataset_val
+      validation_steps <- NULL
+    }
+    
+    if (return_gen) {
+      return(list(gen = gen, gen.val = gen.val))
+    }
+    
+    model <- keras::set_weights(model, model_weights)
+    history <-
+      model %>% keras::fit(
+        x = gen,
+        validation_data = validation_data,
+        validation_steps = validation_steps,
+        steps_per_epoch = steps_per_epoch,
+        max_queue_size = max_queue_size,
+        epochs = epochs,
+        initial_epoch = initial_epoch,
+        callbacks = c(callbacks, callback_list),
+        class_weight = class_weight,
+        batch_size = batch_size,
+        verbose = print_scores)
+    
+    if (validation_only_after_training) {
+      history$val_loss <- model$val_loss
+      history$val_acc <- model$val_acc
+      model$val_loss <- NULL
+      model$val_acc <- NULL
+    }
+    
+  } else {
+    
+    model <- keras::set_weights(model, model_weights)
+    if (!is.null(dataset_val)) {
+      validation_data <- list(dataset_val[[1]], dataset_val[[2]])
+    } else {
+      validation_data <- NULL
+    }
+    
+    history <- keras::fit(
+      object = model,
+      x = dataset[[1]],
+      y = dataset[[2]],
+      batch_size = batch_size,
+      validation_split = train_val_ratio,
+      validation_data = validation_data,
+      callbacks = c(callbacks, callback_list),
+      epochs = epochs,
+      class_weight = class_weight,
+      verbose = print_scores)
+  }
+  
+  if (removeLog & file.exists(path_file_log)) {
+    file.remove(path_file_log)
+  }
+  
+  message("Training done.")
+  
+  return(history)
+}
+
+#' Generate run_name if none is given or is already present.
+#' 
+#' If no run name is given, will use date as run name. If run name is already present will add _2 to name or 
+#' _x+1 if name ends with _x and x is integer. 
+#'
+#' @param auto_extend If run_name is already present, add "_2" to name. If name already ends with "_x" replace x with x+1.
+#' @noRd
+get_run_name <- function(run_name = NULL, path_tensorboard, path_checkpoint, path_log, path_model_card, auto_extend = FALSE) {
+  
+  if (is.null(run_name)) {
+    run_name_new <- as.character(Sys.time()) %>% stringr::str_replace_all(" ", "_")
+  }
+  
+  tb_names <- ""
+  cp_names <- ""
+  log_names <- ""
+  mc_names <- ""
+  name_present_tb <- FALSE
+  name_present_cp <- FALSE
+  name_present_log <- FALSE
+  name_present_mc <- FALSE
+  
+  if (!is.null(path_tensorboard)) {
+    tb_names <- list.files(path_tensorboard)
+    name_present_tb <- (run_name %in% tb_names) # & any(stringr::str_detect(tb_names, run_name))
+  }
+  if (!is.null(path_checkpoint)) {
+    cp_names <- list.files(path_checkpoint)
+    name_present_cp <- (run_name %in% cp_names) # & any(stringr::str_detect(cp_names, run_name))  
+  }
+  if (!is.null(path_log)) {
+    log_names <- list.files(path_log)
+    name_present_log <- (run_name %in% log_names) # & any(stringr::str_detect(log_names, run_name)) 
+  }
+  if (!is.null(path_model_card)) {
+    mc_names <- list.files(path_model_card)
+    name_present_mc <- (run_name %in% mc_names) # & any(stringr::str_detect(log_names, run_name)) 
+  }
+  
+  name_present <- name_present_tb | name_present_cp | name_present_log | name_present_mc
+  
+  if (name_present & auto_extend) {
+    
+    ends_with_int <- stringr::str_detect(run_name, "_\\d+$")
+    if (ends_with_int) {
+      int_ending <- stringr::str_extract(run_name, "\\d+$") %>% as.integer()
+      run_name_new <- paste0(stringr::str_remove(run_name, "\\d+$"), int_ending + 1)
+    } else {
+      run_name_new <- paste0(run_name, "_2")
+    }
+    
+    int_ending <- stringr::str_subset(c(tb_names, cp_names, log_names, mc_names),
+                                      paste0("^", stringr::str_remove(run_name, "_\\d+$"))) %>% unique()
+    int_ending <- stringr::str_subset(int_ending, "_\\d+$")
+    if (length(int_ending) > 0) {
+      max_int_ending <- stringr::str_extract(int_ending, "_\\d+$") %>% stringr::str_remove("_") %>% as.integer() %>% max()
+      if (!ends_with_int) {
+        run_name_new <- paste0(run_name, "_", max_int_ending + 1)
+      } else {
+        run_name_new <- paste0(stringr::str_remove(run_name, "\\d+$"), max_int_ending + 1)
+      }
+    }
+    
+    if (length(int_ending) > 0) {
+      name_order <- stringr::str_extract(int_ending, "\\d+$") %>% as.integer() %>% order()
+      prev_names <- unique(c(run_name, int_ending[name_order]))
+      if (ends_with_int) {
+        name_order <- stringr::str_extract(prev_names, "\\d+$") %>% as.integer() %>% order()
+        prev_names <- prev_names[name_order]
+      }
+      
+      if (length(prev_names) > 8) {
+        old_names_start <- paste(prev_names[1:2], collapse = ", ")
+        old_names_end <- paste(prev_names[(length(prev_names)-1) : length(prev_names)], collapse = ", ")
+        #old_names <- paste(old_names_start, ",...,", old_names_end) # outputs range of previously used names
+        old_names <- run_name
+      } else {
+        old_names <- paste(prev_names, collapse = ", ")
+      }
+      message(paste("run_name", old_names, "already present, setting run_name to", run_name_new))
+    } else {
+      message(paste("run_name", run_name, "already present, setting run_name to", run_name_new))
+    }
+  }
+  
+  if (name_present & !auto_extend) {
+    stop("run_name already present, please give your run a unique name")
+  }
+  
+  if (!name_present) {
+    return(run_name)
+  }
+  
+  return(run_name_new)
+}
+
+#' Continue training from model card
+#' 
+#' Use information from model card to resume from the corresponding checkpoint using the same training arguments.
+#' 
+#' @param path_model_card Path to model card to resume training from.
+#' @param seed Seed for reproducible results. If `NULL`, set random seed.
+#' @param epoch Epoch to resume from. If `NULL`, use last epoch.
+#' @param new_run_name New run name. If `NULL`, new run name is old run name + '_cont'.
+#' @param new_args Named list of arguments to overwrite. Will use previous arguments from model card otherwise.
+#' For example, if you want to change the batch size and padding option:
+#' `new_args = list(batch_size = 6, padding = TRUE)`.
+#' @param new_compile List of arguments to compile the model again. If `NULL`, use compiled model from checkpoint.
+#' Example: `new_compile = list(loss = 'binary_crossentropy', metrics = 'acc', optimizer = keras::optimizer_adam())`
+#' @param use_mirrored_strategy Whether to use distributed mirrored strategy. 
+#' If NULL, will use distributed mirrored strategy only if >1 GPU available.   
+#' @param unfreeze If `TRUE`, set trainable attribute of model to `TRUE` (unfreeze weights). 
+#' @param verbose Whether to print all training arguments. 
+#' @examples
+#' \donttest{
+#' library(keras)
+#' # create dummy data and temp directories
+#' path_train_1 <- tempfile()
+#' path_train_2 <- tempfile()
+#' path_val_1 <- tempfile()
+#' path_val_2 <- tempfile()
+#' path_checkpoint <- tempfile()
+#' dir.create(path_checkpoint)
+#' path_model_card <- tempfile()
+#' dir.create(path_model_card)
+#' 
+#' for (current_path in c(path_train_1, path_train_2,
+#'                        path_val_1, path_val_2)) {
+#'   dir.create(current_path)
+#'   create_dummy_data(file_path = current_path,
+#'                     num_files = 3,
+#'                     seq_length = 10,
+#'                     num_seq = 5,
+#'                     vocabulary = c("a", "c", "g", "t"))
+#' }
+#' 
+#' # create model
+#' model <- create_model_lstm_cnn(layer_lstm = 8, layer_dense = 2, maxlen = 5)
+#' 
+#' # train model
+#' run_name <- 'test_run_1'
+#' hist <- train_model(train_type = "label_folder",
+#'                     run_name = run_name,
+#'                     path_checkpoint = path_checkpoint,
+#'                     model_card = list(path_model_card = path_model_card, description = 'test run'),
+#'                     model = model,
+#'                     path = c(path_train_1, path_train_2),
+#'                     path_val = c(path_val_1, path_val_2),
+#'                     batch_size = 8,
+#'                     epochs = 3,
+#'                     steps_per_epoch = 6,
+#'                     vocabulary_label = c("label_1", "label_2"))
+#' 
+#' # resume training
+#' resume_training_from_model_card(path_model_card = file.path(path_model_card, run_name))
+#' }
+#' @returns A list of training metrics.  
+#' @export
+resume_training_from_model_card <- function(path_model_card,
+                                            seed = NULL,
+                                            epoch = NULL,
+                                            new_run_name = NULL,
+                                            new_args = NULL,
+                                            new_compile = NULL,
+                                            use_mirrored_strategy = NULL,
+                                            unfreeze = FALSE, 
+                                            verbose = FALSE) {
+  
+  if (is.null(use_mirrored_strategy)) use_mirrored_strategy <- ifelse(count_gpu() > 1, TRUE, FALSE)
+  
+  info <- file.info(path_model_card)
+  is_directory <- info$isdir
+  
+  if (is.na(is_directory)) {
+    stop("model_card path does not exist.\n")
+  } else if (is_directory) {
+    mc <- get_mc(path_model_card = path_model_card, epoch = epoch)
+  } else {
+    mc <- path_model_card
+  }
+  
+  mc_args <- readRDS(mc)
+  train_args_mc <- mc_args$train_model_args
+  new_train_args <- train_args_mc
+  
+  if (is.null(new_run_name)) {
+    new_train_args$run_name <- set_new_run_name(train_args_mc$run_name)
+  } else {
+    new_train_args$run_name <- new_run_name
+  }
+  
+  # overwrite args
+  if (is.null(seed)) seed <- get_seed()
+  new_train_args$seed <- seed
+  
+  # load checkpoint to resume from
+  if (is.null(train_args_mc$path_checkpoint)) {
+    stop('Did not save checkpoints in the run from model card')
+  }
+  
+  if (unfreeze) {
+    model$trainable <- TRUE
+  }
+  
+  if (use_mirrored_strategy) {
+    mirrored_strategy <- tensorflow::tf$distribute$MirroredStrategy()
+    with(mirrored_strategy$scope(), {
+      model <- load_model(cp_path = file.path(train_args_mc$path_checkpoint, train_args_mc$run_name),
+                          ep_index = epoch,
+                          new_compile = new_compile)
+    })
+  } else {
+    model <- load_model(cp_path = file.path(train_args_mc$path_checkpoint, train_args_mc$run_name),
+                        ep_index = epoch,
+                        new_compile = new_compile)
+  }
+  
+  new_train_args$model <- model
+  
+  if (!is.null(new_args)) {
+    stopifnot(is.list(new_args))
+    for (n in names(new_args))
+      new_train_args[[n]] <- new_args[[n]]
+  }
+  
+  new_train_args$model_card[['cont_train_info']] <- paste0('run continues training from run ',
+                                                           train_args_mc, ' and epoch ',
+                                                           max(mc_args$logs$processing_step))
+  
+  if (verbose) {
+    print(new_train_args)
+  }
+  
+  do.call(train_model, new_train_args)
+  
+}
+
+get_mc <- function(path_model_card, epoch = NULL) {
+  
+  all_cards <- list.files(path_model_card, full.names = TRUE)
+  all_epochs <- vector("integer", length(all_cards))
+  for (i in seq_along(all_cards)) {
+    split_string <- all_cards[i] %>% basename() %>% stringr::str_split("_")  
+    all_epochs[i] <- split_string[[1]][2] %>% as.integer()
+  }
+  
+  if (is.null(epoch)) epoch <- max(all_epochs)
+  
+  index <- all_epochs == epoch
+  if (sum(index) == 0) {
+    error_message <- paste('epoch not found in model card directory, possible values:',
+                           paste(all_epochs, collapse = ", "))
+    stop(error_message)
+  } 
+  
+  mc <- all_cards[index]
+  return(mc)
+  
+}
+
+load_model <- function(cp_path,
+                       ep_index,
+                       new_compile) {
+  
+  model <- load_cp(cp_path,
+                   ep_index = ep_index,
+                   mirrored_strategy = FALSE,
+                   compile = ifelse(is.null(new_compile), TRUE, FALSE))
+  
+  if (!is.null(new_compile)) {
+    model <- keras::compile(model,
+                            optimizer = new_compile$optimizer,
+                            loss = new_compile$loss,
+                            metrics = new_compile$metrics)
+  }
+  
+  return(model)
+  
+}
+
+get_seed <- function() {
+  
+  current_time <- Sys.time()
+  current_time <- as.numeric(current_time) * 1e2
+  seed_value <- (current_time %% 10^5) %>% as.integer()
+  set.seed(seed_value)
+  return(sample(1:10^6, 2))
+  
+}
+
+set_new_run_name <- function(run_name_old) {
+  
+  run_name_new <- paste0(run_name_old, '_cont')
+  return(run_name_new)
+  
+}