|
a |
|
b/R/create_model_lstm_cnn.R |
|
|
1 |
#' @title Create LSTM/CNN network |
|
|
2 |
#' |
|
|
3 |
#' @description Creates a network consisting of an arbitrary number of CNN, LSTM and dense layers. |
|
|
4 |
#' Last layer is a dense layer. |
|
|
5 |
#' |
|
|
6 |
#' @param maxlen Length of predictor sequence. |
|
|
7 |
#' @param dropout_lstm Fraction of the units to drop for inputs. |
|
|
8 |
#' @param recurrent_dropout_lstm Fraction of the units to drop for recurrent state. |
|
|
9 |
#' @param layer_lstm Number of cells per network layer. Can be a scalar or vector. |
|
|
10 |
#' @param layer_dense Vector specifying number of neurons per dense layer after last LSTM or CNN layer (if no LSTM used). |
|
|
11 |
#' @param dropout_dense Dropout rates between dense layers. No dropout if `NULL`. |
|
|
12 |
#' @param solver Optimization method, options are `"adam", "adagrad", "rmsprop"` or `"sgd"`. |
|
|
13 |
#' @param learning_rate Learning rate for optimizer. |
|
|
14 |
#' @param bidirectional Use bidirectional wrapper for lstm layers. |
|
|
15 |
#' @param vocabulary_size Number of unique character in vocabulary. |
|
|
16 |
#' @param stateful Boolean. Whether to use stateful LSTM layer. |
|
|
17 |
#' @param batch_size Number of samples that are used for one network update. Only used if \code{stateful = TRUE}. |
|
|
18 |
#' @param compile Whether to compile the model. |
|
|
19 |
#' @param kernel_size Size of 1d convolutional layers. For multiple layers, assign a vector. (e.g, `rep(3,2)` for two layers and kernel size 3) |
|
|
20 |
#' @param filters Number of filters. For multiple layers, assign a vector. |
|
|
21 |
#' @param strides Stride values. For multiple layers, assign a vector. |
|
|
22 |
#' @param pool_size Integer, size of the max pooling windows. For multiple layers, assign a vector. |
|
|
23 |
#' @param padding Padding of CNN layers, e.g. `"same", "valid"` or `"causal"`. |
|
|
24 |
#' @param dilation_rate Integer, the dilation rate to use for dilated convolution. |
|
|
25 |
#' @param gap Whether to apply global average pooling after last CNN layer. |
|
|
26 |
#' @param use_bias Boolean. Usage of bias for CNN layers. |
|
|
27 |
#' @param residual_block Boolean. If true, the residual connections are used in CNN. It is not used in the first convolutional layer. |
|
|
28 |
#' @param residual_block_length Integer. Determines how many convolutional layers (or triplets when `size_reduction_1D_conv` is `TRUE`) exist |
|
|
29 |
# between the legs of a residual connection. e.g. if the `length kernel_size/filters` is 7 and `residual_block_length` is 2, there are 1+(7-1)*2 convolutional |
|
|
30 |
# layers in the model when `size_reduction_1Dconv` is FALSE and 1+(7-1)*2*3 convolutional layers when `size_reduction_1Dconv` is TRUE. |
|
|
31 |
#' @param size_reduction_1Dconv Boolean. When `TRUE`, the number of filters in the convolutional layers is reduced to 1/4 of the number of filters of |
|
|
32 |
# the original layer by a convolution layer with kernel size 1, and number of filters are increased back to the original value by a convolution layer |
|
|
33 |
# with kernel size 1 after the convolution with original kernel size with reduced number of filters. |
|
|
34 |
#' @param label_input Integer or `NULL`. If not `NULL`, adds additional input layer of \code{label_input} size. |
|
|
35 |
#' @param zero_mask Boolean, whether to apply zero masking before LSTM layer. Only used if model does not use any CNN layers. |
|
|
36 |
#' @param label_smoothing Float in \[0, 1\]. If 0, no smoothing is applied. If > 0, loss between the predicted |
|
|
37 |
#' labels and a smoothed version of the true labels, where the smoothing squeezes the labels towards 0.5. |
|
|
38 |
#' The closer the argument is to 1 the more the labels get smoothed. |
|
|
39 |
#' @param label_noise_matrix Matrix of label noises. Every row stands for one class and columns for percentage of labels in that class. |
|
|
40 |
#' If first label contains 5 percent wrong labels and second label no noise, then |
|
|
41 |
#' |
|
|
42 |
#' \code{label_noise_matrix <- matrix(c(0.95, 0.05, 0, 1), nrow = 2, byrow = TRUE )} |
|
|
43 |
#' @param last_layer_activation Activation function of output layer(s). For example `"sigmoid"` or `"softmax"`. |
|
|
44 |
#' @param loss_fn Either `"categorical_crossentropy"` or `"binary_crossentropy"`. If `label_noise_matrix` given, will use custom `"noisy_loss"`. |
|
|
45 |
#' @param num_output_layers Number of output layers. |
|
|
46 |
#' @param auc_metric Whether to add AUC metric. |
|
|
47 |
#' @param f1_metric Whether to add F1 metric. |
|
|
48 |
#' @param bal_acc Whether to add balanced accuracy. |
|
|
49 |
#' @param verbose Boolean. |
|
|
50 |
#' @param batch_norm_momentum Momentum for the moving mean and the moving variance. |
|
|
51 |
#' @param model_seed Set seed for model parameters in tensorflow if not `NULL`. |
|
|
52 |
#' @param mixed_precision Whether to use mixed precision (https://www.tensorflow.org/guide/mixed_precision). |
|
|
53 |
#' @param mirrored_strategy Whether to use distributed mirrored strategy. If NULL, will use distributed mirrored strategy only if >1 GPU available. |
|
|
54 |
#' @examplesIf reticulate::py_module_available("tensorflow") |
|
|
55 |
#' create_model_lstm_cnn( |
|
|
56 |
#' maxlen = 500, |
|
|
57 |
#' vocabulary_size = 4, |
|
|
58 |
#' kernel_size = c(8, 8, 8), |
|
|
59 |
#' filters = c(16, 32, 64), |
|
|
60 |
#' pool_size = c(3, 3, 3), |
|
|
61 |
#' layer_lstm = c(32, 64), |
|
|
62 |
#' layer_dense = c(128, 4), |
|
|
63 |
#' learning_rate = 0.001) |
|
|
64 |
#' |
|
|
65 |
#' @returns A keras model, stacks CNN, LSTM and dense layers. |
|
|
66 |
#' @export |
|
|
67 |
create_model_lstm_cnn <- function( |
|
|
68 |
maxlen = 50, |
|
|
69 |
dropout_lstm = 0, |
|
|
70 |
recurrent_dropout_lstm = 0, |
|
|
71 |
layer_lstm = NULL, |
|
|
72 |
layer_dense = c(4), |
|
|
73 |
dropout_dense = NULL, |
|
|
74 |
kernel_size = NULL, |
|
|
75 |
filters = NULL, |
|
|
76 |
strides = NULL, |
|
|
77 |
pool_size = NULL, |
|
|
78 |
solver = "adam", |
|
|
79 |
learning_rate = 0.001, |
|
|
80 |
vocabulary_size = 4, |
|
|
81 |
bidirectional = FALSE, |
|
|
82 |
stateful = FALSE, |
|
|
83 |
batch_size = NULL, |
|
|
84 |
compile = TRUE, |
|
|
85 |
padding = "same", |
|
|
86 |
dilation_rate = NULL, |
|
|
87 |
gap = FALSE, |
|
|
88 |
use_bias = TRUE, |
|
|
89 |
residual_block = FALSE, |
|
|
90 |
residual_block_length = 1, |
|
|
91 |
size_reduction_1Dconv = FALSE, |
|
|
92 |
label_input = NULL, |
|
|
93 |
zero_mask = FALSE, |
|
|
94 |
label_smoothing = 0, |
|
|
95 |
label_noise_matrix = NULL, |
|
|
96 |
last_layer_activation = "softmax", |
|
|
97 |
loss_fn = "categorical_crossentropy", |
|
|
98 |
num_output_layers = 1, |
|
|
99 |
auc_metric = FALSE, |
|
|
100 |
f1_metric = FALSE, |
|
|
101 |
bal_acc = FALSE, |
|
|
102 |
verbose = TRUE, |
|
|
103 |
batch_norm_momentum = 0.99, |
|
|
104 |
model_seed = NULL, |
|
|
105 |
mixed_precision = FALSE, |
|
|
106 |
mirrored_strategy = NULL) { |
|
|
107 |
|
|
|
108 |
if (mixed_precision) tensorflow::tf$keras$mixed_precision$set_global_policy("mixed_float16") |
|
|
109 |
|
|
|
110 |
if (is.null(mirrored_strategy)) mirrored_strategy <- ifelse(count_gpu() > 1, TRUE, FALSE) |
|
|
111 |
if (mirrored_strategy) { |
|
|
112 |
mirrored_strategy <- tensorflow::tf$distribute$MirroredStrategy() |
|
|
113 |
with(mirrored_strategy$scope(), { |
|
|
114 |
argg <- as.list(environment()) |
|
|
115 |
argg$mirrored_strategy <- FALSE |
|
|
116 |
model <- do.call(create_model_lstm_cnn, argg) |
|
|
117 |
}) |
|
|
118 |
return(model) |
|
|
119 |
} |
|
|
120 |
|
|
|
121 |
layer_dense <- as.integer(layer_dense) |
|
|
122 |
#browser() |
|
|
123 |
if (!is.null(model_seed)) tensorflow::tf$random$set_seed(model_seed) |
|
|
124 |
num_targets <- layer_dense[length(layer_dense)] |
|
|
125 |
layers.lstm <- length(layer_lstm) |
|
|
126 |
use.cnn <- ifelse(!is.null(kernel_size), TRUE, FALSE) |
|
|
127 |
|
|
|
128 |
if (!is.null(layer_lstm)) { |
|
|
129 |
stopifnot(length(layer_lstm) == 1 | (length(layer_lstm) == layers.lstm)) |
|
|
130 |
} |
|
|
131 |
|
|
|
132 |
if (layers.lstm == 0 & !use.cnn) { |
|
|
133 |
stop("Model does not use LSTM or CNN layers.") |
|
|
134 |
} |
|
|
135 |
|
|
|
136 |
if (is.null(strides)) strides <- rep(1L, length(filters)) |
|
|
137 |
if (is.null(dilation_rate) & use.cnn) dilation_rate <- rep(1L, length(filters)) |
|
|
138 |
|
|
|
139 |
if (use.cnn) { |
|
|
140 |
same_length <- (length(kernel_size) == length(filters)) & |
|
|
141 |
(length(filters) == length(strides)) & |
|
|
142 |
(length(strides) == length(dilation_rate)) |
|
|
143 |
if (!same_length) { |
|
|
144 |
stop("kernel_size, filters, dilation_rate and strides must have the same length") |
|
|
145 |
} |
|
|
146 |
if (residual_block & (padding != "same")) { |
|
|
147 |
stop("Padding option must be same when residual block is used.") |
|
|
148 |
} |
|
|
149 |
} |
|
|
150 |
|
|
|
151 |
stopifnot(maxlen > 0) |
|
|
152 |
stopifnot(dropout_lstm <= 1 & dropout_lstm >= 0) |
|
|
153 |
stopifnot(recurrent_dropout_lstm <= 1 & recurrent_dropout_lstm >= 0) |
|
|
154 |
|
|
|
155 |
if (length(layer_lstm) == 1) { |
|
|
156 |
layer_lstm <- rep(layer_lstm, layers.lstm) |
|
|
157 |
} |
|
|
158 |
|
|
|
159 |
if (stateful) { |
|
|
160 |
input_tensor <- keras::layer_input(batch_shape = c(batch_size, maxlen, vocabulary_size)) |
|
|
161 |
} else { |
|
|
162 |
input_tensor <- keras::layer_input(shape = c(maxlen, vocabulary_size)) |
|
|
163 |
} |
|
|
164 |
|
|
|
165 |
if (use.cnn) { |
|
|
166 |
for (i in 1:length(filters)) { |
|
|
167 |
if (i == 1) { |
|
|
168 |
output_tensor <- input_tensor %>% |
|
|
169 |
keras::layer_conv_1d( |
|
|
170 |
kernel_size = kernel_size[i], |
|
|
171 |
padding = padding, |
|
|
172 |
activation = "relu", |
|
|
173 |
filters = filters[i], |
|
|
174 |
strides = strides[i], |
|
|
175 |
dilation_rate = dilation_rate[i], |
|
|
176 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL), |
|
|
177 |
use_bias = use_bias |
|
|
178 |
) |
|
|
179 |
if (!is.null(pool_size) && pool_size[i] > 1) { |
|
|
180 |
output_tensor <- output_tensor %>% keras::layer_max_pooling_1d(pool_size = pool_size[i]) |
|
|
181 |
} |
|
|
182 |
output_tensor <- output_tensor %>% keras::layer_batch_normalization(momentum = batch_norm_momentum) |
|
|
183 |
} else { |
|
|
184 |
if (residual_block){ |
|
|
185 |
if ((strides[i] > 1) | (pool_size[i] > 1)) { |
|
|
186 |
residual_layer <- output_tensor %>% keras::layer_average_pooling_1d(pool_size=strides[i]*pool_size[i]) |
|
|
187 |
} else { |
|
|
188 |
residual_layer <- output_tensor |
|
|
189 |
} |
|
|
190 |
if (filters[i-1] != filters[i]){ |
|
|
191 |
residual_layer <- residual_layer %>% |
|
|
192 |
keras::layer_conv_1d( |
|
|
193 |
kernel_size = 1, |
|
|
194 |
padding = padding, |
|
|
195 |
activation = "relu", |
|
|
196 |
filters = filters[i], |
|
|
197 |
strides = 1, |
|
|
198 |
dilation_rate = dilation_rate[i], |
|
|
199 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL), |
|
|
200 |
use_bias = use_bias |
|
|
201 |
) |
|
|
202 |
residual_layer <- residual_layer %>% keras::layer_batch_normalization(momentum = batch_norm_momentum) |
|
|
203 |
} |
|
|
204 |
if (residual_block_length > 1){ |
|
|
205 |
for (j in 1:(residual_block_length-1)){ |
|
|
206 |
if (size_reduction_1Dconv){ |
|
|
207 |
output_tensor <- output_tensor %>% |
|
|
208 |
keras::layer_conv_1d( |
|
|
209 |
kernel_size = 1, |
|
|
210 |
padding = padding, |
|
|
211 |
activation = "relu", |
|
|
212 |
filters = filters[i]/4, |
|
|
213 |
strides = 1, |
|
|
214 |
dilation_rate = dilation_rate[i], |
|
|
215 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL), |
|
|
216 |
use_bias = use_bias |
|
|
217 |
) |
|
|
218 |
output_tensor <- output_tensor %>% keras::layer_batch_normalization(momentum = batch_norm_momentum) |
|
|
219 |
|
|
|
220 |
output_tensor <- output_tensor %>% |
|
|
221 |
keras::layer_conv_1d( |
|
|
222 |
kernel_size = kernel_size[i], |
|
|
223 |
padding = padding, |
|
|
224 |
activation = "relu", |
|
|
225 |
filters = filters[i]/4, |
|
|
226 |
strides = 1, |
|
|
227 |
dilation_rate = dilation_rate[i], |
|
|
228 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL), |
|
|
229 |
use_bias = use_bias |
|
|
230 |
) |
|
|
231 |
output_tensor <- output_tensor %>% keras::layer_batch_normalization(momentum = batch_norm_momentum) |
|
|
232 |
|
|
|
233 |
output_tensor <- output_tensor %>% |
|
|
234 |
keras::layer_conv_1d( |
|
|
235 |
kernel_size = 1, |
|
|
236 |
padding = padding, |
|
|
237 |
activation = "relu", |
|
|
238 |
filters = filters[i], |
|
|
239 |
strides = 1, |
|
|
240 |
dilation_rate = dilation_rate[i], |
|
|
241 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL), |
|
|
242 |
use_bias = use_bias |
|
|
243 |
) |
|
|
244 |
output_tensor <- output_tensor %>% keras::layer_batch_normalization(momentum = batch_norm_momentum) |
|
|
245 |
|
|
|
246 |
} else { |
|
|
247 |
output_tensor <- output_tensor %>% |
|
|
248 |
keras::layer_conv_1d( |
|
|
249 |
kernel_size = kernel_size[i], |
|
|
250 |
padding = padding, |
|
|
251 |
activation = "relu", |
|
|
252 |
filters = filters[i], |
|
|
253 |
strides = 1, |
|
|
254 |
dilation_rate = dilation_rate[i], |
|
|
255 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL), |
|
|
256 |
use_bias = use_bias |
|
|
257 |
) |
|
|
258 |
output_tensor <- output_tensor %>% keras::layer_batch_normalization(momentum = batch_norm_momentum) |
|
|
259 |
} |
|
|
260 |
} |
|
|
261 |
} |
|
|
262 |
} |
|
|
263 |
if (size_reduction_1Dconv){ |
|
|
264 |
output_tensor <- output_tensor %>% |
|
|
265 |
keras::layer_conv_1d( |
|
|
266 |
kernel_size = 1, |
|
|
267 |
padding = padding, |
|
|
268 |
activation = "relu", |
|
|
269 |
filters = filters[i]/4, |
|
|
270 |
strides = 1, |
|
|
271 |
dilation_rate = dilation_rate[i], |
|
|
272 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL), |
|
|
273 |
use_bias = use_bias |
|
|
274 |
) |
|
|
275 |
output_tensor <- output_tensor %>% keras::layer_batch_normalization(momentum = batch_norm_momentum) |
|
|
276 |
|
|
|
277 |
output_tensor <- output_tensor %>% |
|
|
278 |
keras::layer_conv_1d( |
|
|
279 |
kernel_size = kernel_size[i], |
|
|
280 |
padding = padding, |
|
|
281 |
activation = "relu", |
|
|
282 |
filters = filters[i]/4, |
|
|
283 |
strides = strides[i], |
|
|
284 |
dilation_rate = dilation_rate[i], |
|
|
285 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL), |
|
|
286 |
use_bias = use_bias |
|
|
287 |
) |
|
|
288 |
output_tensor <- output_tensor %>% keras::layer_batch_normalization(momentum = batch_norm_momentum) |
|
|
289 |
|
|
|
290 |
output_tensor <- output_tensor %>% |
|
|
291 |
keras::layer_conv_1d( |
|
|
292 |
kernel_size = 1, |
|
|
293 |
padding = padding, |
|
|
294 |
activation = "relu", |
|
|
295 |
filters = filters[i], |
|
|
296 |
strides = 1, |
|
|
297 |
dilation_rate = dilation_rate[i], |
|
|
298 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL), |
|
|
299 |
use_bias = use_bias |
|
|
300 |
) |
|
|
301 |
output_tensor <- output_tensor %>% keras::layer_batch_normalization(momentum = batch_norm_momentum) |
|
|
302 |
|
|
|
303 |
} else { |
|
|
304 |
output_tensor <- output_tensor %>% |
|
|
305 |
keras::layer_conv_1d( |
|
|
306 |
kernel_size = kernel_size[i], |
|
|
307 |
padding = padding, |
|
|
308 |
activation = "relu", |
|
|
309 |
filters = filters[i], |
|
|
310 |
strides = strides[i], |
|
|
311 |
dilation_rate = dilation_rate[i], |
|
|
312 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL), |
|
|
313 |
use_bias = use_bias |
|
|
314 |
) |
|
|
315 |
output_tensor <- output_tensor %>% keras::layer_batch_normalization(momentum = batch_norm_momentum) |
|
|
316 |
} |
|
|
317 |
if (!is.null(pool_size) && pool_size[i] > 1) { |
|
|
318 |
output_tensor <- output_tensor %>% keras::layer_max_pooling_1d(pool_size = pool_size[i]) |
|
|
319 |
} |
|
|
320 |
#output_tensor <- output_tensor %>% keras::layer_batch_normalization(momentum = batch_norm_momentum) |
|
|
321 |
if (residual_block){ |
|
|
322 |
output_tensor <- keras::layer_add(list(output_tensor, residual_layer)) |
|
|
323 |
} |
|
|
324 |
} |
|
|
325 |
} |
|
|
326 |
} else { |
|
|
327 |
if (zero_mask) { |
|
|
328 |
output_tensor <- input_tensor %>% keras::layer_masking() |
|
|
329 |
} else { |
|
|
330 |
output_tensor <- input_tensor |
|
|
331 |
} |
|
|
332 |
} |
|
|
333 |
# lstm layers |
|
|
334 |
if (layers.lstm > 0) { |
|
|
335 |
if (layers.lstm > 1) { |
|
|
336 |
if (bidirectional) { |
|
|
337 |
for (i in 1:(layers.lstm - 1)) { |
|
|
338 |
output_tensor <- output_tensor %>% |
|
|
339 |
keras::bidirectional( |
|
|
340 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL), |
|
|
341 |
keras::layer_lstm( |
|
|
342 |
units = layer_lstm[i], |
|
|
343 |
return_sequences = TRUE, |
|
|
344 |
dropout = dropout_lstm, |
|
|
345 |
recurrent_dropout = recurrent_dropout_lstm, |
|
|
346 |
stateful = stateful, |
|
|
347 |
recurrent_activation = "sigmoid" |
|
|
348 |
) |
|
|
349 |
) |
|
|
350 |
} |
|
|
351 |
} else { |
|
|
352 |
for (i in 1:(layers.lstm - 1)) { |
|
|
353 |
output_tensor <- output_tensor %>% |
|
|
354 |
keras::layer_lstm( |
|
|
355 |
layer_lstm[i], |
|
|
356 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL), |
|
|
357 |
return_sequences = TRUE, |
|
|
358 |
dropout = dropout_lstm, |
|
|
359 |
recurrent_dropout = recurrent_dropout_lstm, |
|
|
360 |
stateful = stateful, |
|
|
361 |
recurrent_activation = "sigmoid" |
|
|
362 |
) |
|
|
363 |
} |
|
|
364 |
} |
|
|
365 |
} |
|
|
366 |
# last LSTM layer |
|
|
367 |
if (bidirectional) { |
|
|
368 |
output_tensor <- output_tensor %>% |
|
|
369 |
keras::bidirectional( |
|
|
370 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL), |
|
|
371 |
keras::layer_lstm(units = layer_lstm[length(layer_lstm)], dropout = dropout_lstm, recurrent_dropout = recurrent_dropout_lstm, |
|
|
372 |
stateful = stateful, recurrent_activation = "sigmoid") |
|
|
373 |
) |
|
|
374 |
} else { |
|
|
375 |
output_tensor <- output_tensor %>% |
|
|
376 |
keras::layer_lstm(units = layer_lstm[length(layer_lstm)], |
|
|
377 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL), |
|
|
378 |
dropout = dropout_lstm, recurrent_dropout = recurrent_dropout_lstm, stateful = stateful, |
|
|
379 |
recurrent_activation = "sigmoid") |
|
|
380 |
} |
|
|
381 |
} |
|
|
382 |
|
|
|
383 |
if (gap) { |
|
|
384 |
if (layers.lstm != 0) { |
|
|
385 |
stop("Global average pooling not compatible with using LSTM layer") |
|
|
386 |
} |
|
|
387 |
output_tensor <- output_tensor %>% keras::layer_global_average_pooling_1d() |
|
|
388 |
} else { |
|
|
389 |
if (layers.lstm == 0) { |
|
|
390 |
output_tensor <- output_tensor %>% keras::layer_flatten() |
|
|
391 |
} |
|
|
392 |
} |
|
|
393 |
|
|
|
394 |
if (!is.null(label_input)) { |
|
|
395 |
input_label_list <- list() |
|
|
396 |
for (i in 1:length(label_input)) { |
|
|
397 |
if (!stateful) { |
|
|
398 |
eval(parse(text = paste0("label_input_layer_", as.character(i), "<- keras::layer_input(c(label_input[i]))"))) |
|
|
399 |
} else { |
|
|
400 |
eval(parse(text = paste0("label_input_layer_", as.character(i), "<- keras::layer_input(batch_shape = c(batch_size, label_input[i]))"))) |
|
|
401 |
} |
|
|
402 |
input_label_list[[i]] <- eval(parse(text = paste0("label_input_layer_", as.character(i)))) |
|
|
403 |
} |
|
|
404 |
output_tensor <- keras::layer_concatenate(c( |
|
|
405 |
input_label_list, output_tensor |
|
|
406 |
) |
|
|
407 |
) |
|
|
408 |
} |
|
|
409 |
|
|
|
410 |
if (length(layer_dense) > 1) { |
|
|
411 |
for (i in 1:(length(layer_dense) - 1)) { |
|
|
412 |
if (!is.null(dropout_dense)) output_tensor <- output_tensor %>% keras::layer_dropout(dropout_dense[i]) |
|
|
413 |
output_tensor <- output_tensor %>% keras::layer_dense(units = layer_dense[i], activation = "relu") |
|
|
414 |
} |
|
|
415 |
} |
|
|
416 |
|
|
|
417 |
if (num_output_layers == 1) { |
|
|
418 |
if (!is.null(dropout_dense)) output_tensor <- output_tensor %>% keras::layer_dropout(dropout_dense[length(dropout_dense)]) |
|
|
419 |
output_tensor <- output_tensor %>% |
|
|
420 |
keras::layer_dense(units = num_targets, activation = last_layer_activation, dtype = "float32") |
|
|
421 |
} else { |
|
|
422 |
output_list <- list() |
|
|
423 |
for (i in 1:num_output_layers) { |
|
|
424 |
layer_name <- paste0("output_", i, "_", num_output_layers) |
|
|
425 |
if (!is.null(dropout_dense)) { |
|
|
426 |
output_list[[i]] <- output_tensor %>% keras::layer_dropout(dropout_dense[length(dropout_dense)]) |
|
|
427 |
output_list[[i]] <- output_list[[i]] %>% |
|
|
428 |
keras::layer_dense(units = num_targets, activation = last_layer_activation, name = layer_name, dtype = "float32") |
|
|
429 |
} else { |
|
|
430 |
output_list[[i]] <- output_tensor %>% |
|
|
431 |
keras::layer_dense(units = num_targets, activation = last_layer_activation, name = layer_name, dtype = "float32") |
|
|
432 |
} |
|
|
433 |
} |
|
|
434 |
} |
|
|
435 |
|
|
|
436 |
if (!is.null(label_input)) { |
|
|
437 |
label_inputs <- list() |
|
|
438 |
for (i in 1:length(label_input)) { |
|
|
439 |
eval(parse(text = paste0("label_inputs$label_input_layer_", as.character(i), "<- label_input_layer_", as.character(i)))) |
|
|
440 |
} |
|
|
441 |
if (num_output_layers == 1) { |
|
|
442 |
model <- keras::keras_model(inputs = list(label_inputs, input_tensor), outputs = output_tensor) |
|
|
443 |
} else { |
|
|
444 |
model <- keras::keras_model(inputs = list(label_inputs, input_tensor), outputs = output_list) |
|
|
445 |
} |
|
|
446 |
} else { |
|
|
447 |
if (num_output_layers == 1) { |
|
|
448 |
model <- keras::keras_model(inputs = input_tensor, outputs = output_tensor) |
|
|
449 |
} else { |
|
|
450 |
model <- keras::keras_model(inputs = input_tensor, outputs = output_list) |
|
|
451 |
} |
|
|
452 |
} |
|
|
453 |
|
|
|
454 |
if (compile) { |
|
|
455 |
model <- compile_model(model = model, label_smoothing = label_smoothing, layer_dense = layer_dense, |
|
|
456 |
solver = solver, learning_rate = learning_rate, loss_fn = loss_fn, |
|
|
457 |
num_output_layers = num_output_layers, label_noise_matrix = label_noise_matrix, |
|
|
458 |
bal_acc = bal_acc, f1_metric = f1_metric, auc_metric = auc_metric) |
|
|
459 |
} |
|
|
460 |
|
|
|
461 |
argg <- c(as.list(environment())) |
|
|
462 |
model <- add_hparam_list(model, argg) |
|
|
463 |
|
|
|
464 |
if (verbose) model$summary() |
|
|
465 |
return(model) |
|
|
466 |
} |
|
|
467 |
|
|
|
468 |
|
|
|
469 |
#' @title Create LSTM/CNN network to predict middle part of a sequence |
|
|
470 |
#' |
|
|
471 |
#' @description |
|
|
472 |
#' Creates a network consisting of an arbitrary number of CNN, LSTM and dense layers. |
|
|
473 |
#' Function creates two sub networks consisting each of (optional) CNN layers followed by an arbitrary number of LSTM layers. Afterwards the last LSTM layers |
|
|
474 |
#' get concatenated and followed by one or more dense layers. Last layer is a dense layer. |
|
|
475 |
#' Network tries to predict target in the middle of a sequence. If input is AACCTAAGG, input tensors should correspond to x1 = AACC, x2 = GGAA and y = T. |
|
|
476 |
#' |
|
|
477 |
#' @inheritParams create_model_lstm_cnn |
|
|
478 |
#' @examplesIf reticulate::py_module_available("tensorflow") |
|
|
479 |
#' create_model_lstm_cnn_target_middle( |
|
|
480 |
#' maxlen = 500, |
|
|
481 |
#' vocabulary_size = 4, |
|
|
482 |
#' kernel_size = c(8, 8, 8), |
|
|
483 |
#' filters = c(16, 32, 64), |
|
|
484 |
#' pool_size = c(3, 3, 3), |
|
|
485 |
#' layer_lstm = c(32, 64), |
|
|
486 |
#' layer_dense = c(128, 4), |
|
|
487 |
#' learning_rate = 0.001) |
|
|
488 |
#' |
|
|
489 |
#' @returns A keras model with two input layers. Consists of LSTN, CNN and dense layers. |
|
|
490 |
#' @export |
|
|
491 |
create_model_lstm_cnn_target_middle <- function( |
|
|
492 |
maxlen = 50, |
|
|
493 |
dropout_lstm = 0, |
|
|
494 |
recurrent_dropout_lstm = 0, |
|
|
495 |
layer_lstm = 128, |
|
|
496 |
solver = "adam", |
|
|
497 |
learning_rate = 0.001, |
|
|
498 |
vocabulary_size = 4, |
|
|
499 |
bidirectional = FALSE, |
|
|
500 |
stateful = FALSE, |
|
|
501 |
batch_size = NULL, |
|
|
502 |
padding = "same", |
|
|
503 |
compile = TRUE, |
|
|
504 |
layer_dense = NULL, |
|
|
505 |
kernel_size = NULL, |
|
|
506 |
filters = NULL, |
|
|
507 |
pool_size = NULL, |
|
|
508 |
strides = NULL, |
|
|
509 |
label_input = NULL, |
|
|
510 |
zero_mask = FALSE, |
|
|
511 |
label_smoothing = 0, |
|
|
512 |
label_noise_matrix = NULL, |
|
|
513 |
last_layer_activation = "softmax", |
|
|
514 |
loss_fn = "categorical_crossentropy", |
|
|
515 |
num_output_layers = 1, |
|
|
516 |
f1_metric = FALSE, |
|
|
517 |
auc_metric = FALSE, |
|
|
518 |
bal_acc = FALSE, |
|
|
519 |
verbose = TRUE, |
|
|
520 |
batch_norm_momentum = 0.99, |
|
|
521 |
model_seed = NULL, |
|
|
522 |
mixed_precision = FALSE, |
|
|
523 |
mirrored_strategy = NULL) { |
|
|
524 |
|
|
|
525 |
if (mixed_precision) tensorflow::tf$keras$mixed_precision$set_global_policy("mixed_float16") |
|
|
526 |
|
|
|
527 |
if (is.null(mirrored_strategy)) mirrored_strategy <- ifelse(count_gpu() > 1, TRUE, FALSE) |
|
|
528 |
if (mirrored_strategy) { |
|
|
529 |
mirrored_strategy <- tensorflow::tf$distribute$MirroredStrategy() |
|
|
530 |
with(mirrored_strategy$scope(), { |
|
|
531 |
argg <- as.list(environment()) |
|
|
532 |
argg$mirrored_strategy <- FALSE |
|
|
533 |
model <- do.call(create_model_lstm_cnn_target_middle, argg) |
|
|
534 |
}) |
|
|
535 |
return(model) |
|
|
536 |
} |
|
|
537 |
|
|
|
538 |
layer_dense <- as.integer(layer_dense) |
|
|
539 |
if (!is.null(model_seed)) tensorflow::tf$random$set_seed(model_seed) |
|
|
540 |
use.cnn <- ifelse(!is.null(kernel_size), TRUE, FALSE) |
|
|
541 |
num_targets <- layer_dense[length(layer_dense)] |
|
|
542 |
layers.lstm <- length(layer_lstm) |
|
|
543 |
|
|
|
544 |
stopifnot(length(layer_lstm) == 1 | (length(layer_lstm) == layers.lstm)) |
|
|
545 |
stopifnot(maxlen > 0) |
|
|
546 |
stopifnot(dropout_lstm <= 1 & dropout_lstm >= 0) |
|
|
547 |
stopifnot(recurrent_dropout_lstm <= 1 & recurrent_dropout_lstm >= 0) |
|
|
548 |
|
|
|
549 |
if (!is.null(layer_lstm)) { |
|
|
550 |
stopifnot(length(layer_lstm) == 1 | (length(layer_lstm) == layers.lstm)) |
|
|
551 |
} |
|
|
552 |
|
|
|
553 |
if (is.null(strides)) { |
|
|
554 |
strides <- rep(1L, length(filters)) |
|
|
555 |
} |
|
|
556 |
|
|
|
557 |
if (use.cnn) { |
|
|
558 |
same_length <- (length(kernel_size) == length(filters)) & (length(filters) == length(strides)) |
|
|
559 |
if (!same_length) { |
|
|
560 |
stop("kernel_size, filters and strides must have the same length") |
|
|
561 |
} |
|
|
562 |
} |
|
|
563 |
|
|
|
564 |
# length of split sequences |
|
|
565 |
maxlen_1 <- ceiling(maxlen/2) |
|
|
566 |
maxlen_2 <- floor(maxlen/2) |
|
|
567 |
if (stateful) { |
|
|
568 |
input_tensor_1 <- keras::layer_input(batch_shape = c(batch_size, maxlen_1, vocabulary_size)) |
|
|
569 |
} else { |
|
|
570 |
input_tensor_1 <- keras::layer_input(shape = c(maxlen_1, vocabulary_size)) |
|
|
571 |
} |
|
|
572 |
|
|
|
573 |
if (use.cnn) { |
|
|
574 |
for (i in 1:length(filters)) { |
|
|
575 |
if (i == 1) { |
|
|
576 |
output_tensor_1 <- input_tensor_1 %>% |
|
|
577 |
keras::layer_conv_1d( |
|
|
578 |
kernel_size = kernel_size[i], |
|
|
579 |
padding = padding, |
|
|
580 |
activation = "relu", |
|
|
581 |
filters = filters[i], |
|
|
582 |
strides = strides[i], |
|
|
583 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL) |
|
|
584 |
) |
|
|
585 |
if (!is.null(pool_size) && pool_size[i] > 1) { |
|
|
586 |
output_tensor_1 <- output_tensor_1 %>% keras::layer_max_pooling_1d(pool_size = pool_size[i]) |
|
|
587 |
} |
|
|
588 |
output_tensor_1 <- output_tensor_1 %>% keras::layer_batch_normalization(momentum = batch_norm_momentum) |
|
|
589 |
} else { |
|
|
590 |
output_tensor_1 <- output_tensor_1 %>% |
|
|
591 |
keras::layer_conv_1d( |
|
|
592 |
kernel_size = kernel_size[i], |
|
|
593 |
padding = padding, |
|
|
594 |
activation = "relu", |
|
|
595 |
strides = strides[i], |
|
|
596 |
filters = filters[i] |
|
|
597 |
) |
|
|
598 |
if (!is.null(pool_size) && pool_size[i] > 1) { |
|
|
599 |
output_tensor_1 <- output_tensor_1 %>% keras::layer_max_pooling_1d(pool_size = pool_size[i]) |
|
|
600 |
} |
|
|
601 |
output_tensor_1 <- output_tensor_1 %>% keras::layer_batch_normalization(momentum = batch_norm_momentum) |
|
|
602 |
} |
|
|
603 |
} |
|
|
604 |
} else { |
|
|
605 |
if (zero_mask) { |
|
|
606 |
output_tensor_1 <- input_tensor_1 %>% keras::layer_masking() |
|
|
607 |
} else { |
|
|
608 |
output_tensor_1 <- input_tensor_1 |
|
|
609 |
} |
|
|
610 |
} |
|
|
611 |
|
|
|
612 |
# lstm layers |
|
|
613 |
if (!is.null(layers.lstm) && layers.lstm > 0) { |
|
|
614 |
if (layers.lstm > 1) { |
|
|
615 |
if (bidirectional) { |
|
|
616 |
for (i in 1:(layers.lstm - 1)) { |
|
|
617 |
output_tensor_1 <- output_tensor_1 %>% |
|
|
618 |
keras::bidirectional( |
|
|
619 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL), |
|
|
620 |
keras::layer_lstm( |
|
|
621 |
units = layer_lstm[i], |
|
|
622 |
return_sequences = TRUE, |
|
|
623 |
dropout = dropout_lstm, |
|
|
624 |
recurrent_dropout = recurrent_dropout_lstm, |
|
|
625 |
stateful = stateful, |
|
|
626 |
recurrent_activation = "sigmoid" |
|
|
627 |
) |
|
|
628 |
) |
|
|
629 |
} |
|
|
630 |
} else { |
|
|
631 |
for (i in 1:(layers.lstm - 1)) { |
|
|
632 |
output_tensor_1 <- output_tensor_1 %>% |
|
|
633 |
keras::layer_lstm( |
|
|
634 |
units = layer_lstm[i], |
|
|
635 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL), |
|
|
636 |
return_sequences = TRUE, |
|
|
637 |
dropout = dropout_lstm, |
|
|
638 |
recurrent_dropout = recurrent_dropout_lstm, |
|
|
639 |
stateful = stateful, |
|
|
640 |
recurrent_activation = "sigmoid" |
|
|
641 |
) |
|
|
642 |
} |
|
|
643 |
} |
|
|
644 |
} |
|
|
645 |
|
|
|
646 |
# last LSTM layer |
|
|
647 |
if (bidirectional) { |
|
|
648 |
output_tensor_1 <- output_tensor_1 %>% |
|
|
649 |
keras::bidirectional( |
|
|
650 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL), |
|
|
651 |
keras::layer_lstm(units = layer_lstm[length(layer_lstm)], dropout = dropout_lstm, recurrent_dropout = recurrent_dropout_lstm, |
|
|
652 |
stateful = stateful, recurrent_activation = "sigmoid") |
|
|
653 |
) |
|
|
654 |
} else { |
|
|
655 |
output_tensor_1 <- output_tensor_1 %>% |
|
|
656 |
keras::layer_lstm(units = layer_lstm[length(layer_lstm)], |
|
|
657 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL), |
|
|
658 |
dropout = dropout_lstm, recurrent_dropout = recurrent_dropout_lstm, stateful = stateful, |
|
|
659 |
recurrent_activation = "sigmoid") |
|
|
660 |
} |
|
|
661 |
} |
|
|
662 |
|
|
|
663 |
if (stateful) { |
|
|
664 |
input_tensor_2 <- keras::layer_input(batch_shape = c(batch_size, maxlen_2, vocabulary_size)) |
|
|
665 |
} else { |
|
|
666 |
input_tensor_2 <- keras::layer_input(shape = c(maxlen_2, vocabulary_size)) |
|
|
667 |
} |
|
|
668 |
|
|
|
669 |
if (use.cnn) { |
|
|
670 |
for (i in 1:length(filters)) { |
|
|
671 |
if (i == 1) { |
|
|
672 |
output_tensor_2 <- input_tensor_2 %>% |
|
|
673 |
keras::layer_conv_1d( |
|
|
674 |
kernel_size = kernel_size[i], |
|
|
675 |
padding = padding, |
|
|
676 |
activation = "relu", |
|
|
677 |
filters = filters[i], |
|
|
678 |
strides = strides[i], |
|
|
679 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL) |
|
|
680 |
) |
|
|
681 |
if (!is.null(pool_size) && pool_size[i] > 1) { |
|
|
682 |
output_tensor_2 <- output_tensor_2 %>% keras::layer_max_pooling_1d(pool_size = pool_size[i]) |
|
|
683 |
} |
|
|
684 |
output_tensor_2 <- output_tensor_2 %>% keras::layer_batch_normalization(momentum = batch_norm_momentum) |
|
|
685 |
} else { |
|
|
686 |
output_tensor_2 <- output_tensor_2 %>% |
|
|
687 |
keras::layer_conv_1d( |
|
|
688 |
kernel_size = kernel_size[i], |
|
|
689 |
padding = padding, |
|
|
690 |
activation = "relu", |
|
|
691 |
strides = strides[i], |
|
|
692 |
filters = filters[i] |
|
|
693 |
) |
|
|
694 |
if (!is.null(pool_size) && pool_size[i] > 1) { |
|
|
695 |
output_tensor_2 <- output_tensor_2 %>% keras::layer_max_pooling_1d(pool_size = pool_size[i]) |
|
|
696 |
} |
|
|
697 |
output_tensor_2 <- output_tensor_2 %>% keras::layer_batch_normalization(momentum = batch_norm_momentum) |
|
|
698 |
} |
|
|
699 |
} |
|
|
700 |
} else { |
|
|
701 |
if (zero_mask) { |
|
|
702 |
output_tensor_2 <- input_tensor_2 %>% keras::layer_masking() |
|
|
703 |
} else { |
|
|
704 |
output_tensor_2 <- input_tensor_2 |
|
|
705 |
} |
|
|
706 |
} |
|
|
707 |
|
|
|
708 |
|
|
|
709 |
# lstm layers |
|
|
710 |
if (!is.null(layers.lstm) && layers.lstm > 0) { |
|
|
711 |
if (layers.lstm > 1) { |
|
|
712 |
if (bidirectional) { |
|
|
713 |
for (i in 1:(layers.lstm - 1)) { |
|
|
714 |
output_tensor_2 <- output_tensor_2 %>% |
|
|
715 |
keras::bidirectional( |
|
|
716 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL), |
|
|
717 |
keras::layer_lstm( |
|
|
718 |
units = layer_lstm[i], |
|
|
719 |
return_sequences = TRUE, |
|
|
720 |
dropout = dropout_lstm, |
|
|
721 |
recurrent_dropout = recurrent_dropout_lstm, |
|
|
722 |
stateful = stateful, |
|
|
723 |
recurrent_activation = "sigmoid" |
|
|
724 |
) |
|
|
725 |
) |
|
|
726 |
} |
|
|
727 |
} else { |
|
|
728 |
for (i in 1:(layers.lstm - 1)) { |
|
|
729 |
output_tensor_2 <- output_tensor_2 %>% |
|
|
730 |
keras::layer_lstm( |
|
|
731 |
units = layer_lstm[i], |
|
|
732 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL), |
|
|
733 |
return_sequences = TRUE, |
|
|
734 |
dropout = dropout_lstm, |
|
|
735 |
recurrent_dropout = recurrent_dropout_lstm, |
|
|
736 |
stateful = stateful, |
|
|
737 |
recurrent_activation = "sigmoid" |
|
|
738 |
) |
|
|
739 |
} |
|
|
740 |
} |
|
|
741 |
} |
|
|
742 |
|
|
|
743 |
# last LSTM layer |
|
|
744 |
if (bidirectional) { |
|
|
745 |
output_tensor_2 <- output_tensor_2 %>% |
|
|
746 |
keras::bidirectional( |
|
|
747 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL), |
|
|
748 |
keras::layer_lstm(units = layer_lstm[length(layer_lstm)], dropout = dropout_lstm, recurrent_dropout = recurrent_dropout_lstm, |
|
|
749 |
stateful = stateful, recurrent_activation = "sigmoid") |
|
|
750 |
) |
|
|
751 |
} else { |
|
|
752 |
output_tensor_2 <- output_tensor_2 %>% |
|
|
753 |
keras::layer_lstm(units = layer_lstm[length(layer_lstm)], |
|
|
754 |
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL), |
|
|
755 |
dropout = dropout_lstm, recurrent_dropout = recurrent_dropout_lstm, stateful = stateful, |
|
|
756 |
recurrent_activation = "sigmoid") |
|
|
757 |
} |
|
|
758 |
} |
|
|
759 |
|
|
|
760 |
output_tensor <- keras::layer_concatenate(list(output_tensor_1, output_tensor_2)) |
|
|
761 |
|
|
|
762 |
if (layers.lstm == 0) { |
|
|
763 |
output_tensor <- output_tensor %>% keras::layer_flatten() |
|
|
764 |
} |
|
|
765 |
|
|
|
766 |
if (!is.null(label_input)) { |
|
|
767 |
input_label_list <- list() |
|
|
768 |
for (i in 1:length(label_input)) { |
|
|
769 |
if (!stateful) { |
|
|
770 |
eval(parse(text = paste0("label_input_layer_", as.character(i), "<- keras::layer_input(c(label_input[i]))"))) |
|
|
771 |
} else { |
|
|
772 |
eval(parse(text = paste0("label_input_layer_", as.character(i), "<- keras::layer_input(batch_shape = c(batch_size, label_input[i]))"))) |
|
|
773 |
} |
|
|
774 |
input_label_list[[i]] <- eval(parse(text = paste0("label_input_layer_", as.character(i)))) |
|
|
775 |
} |
|
|
776 |
output_tensor <- keras::layer_concatenate(c( |
|
|
777 |
input_label_list, output_tensor |
|
|
778 |
) |
|
|
779 |
) |
|
|
780 |
} |
|
|
781 |
|
|
|
782 |
if (length(layer_dense) > 1) { |
|
|
783 |
for (i in 1:(length(layer_dense) - 1)) { |
|
|
784 |
output_tensor <- output_tensor %>% keras::layer_dense(units = layer_dense[i], activation = "relu") |
|
|
785 |
} |
|
|
786 |
} |
|
|
787 |
|
|
|
788 |
if (num_output_layers == 1) { |
|
|
789 |
output_tensor <- output_tensor %>% |
|
|
790 |
keras::layer_dense(units = num_targets, activation = last_layer_activation, dtype = "float32") |
|
|
791 |
} else { |
|
|
792 |
output_list <- list() |
|
|
793 |
for (i in 1:num_output_layers) { |
|
|
794 |
layer_name <- paste0("output_", i, "_", num_output_layers) |
|
|
795 |
output_list[[i]] <- output_tensor %>% |
|
|
796 |
keras::layer_dense(units = num_targets, activation = last_layer_activation, name = layer_name, dtype = "float32") |
|
|
797 |
} |
|
|
798 |
} |
|
|
799 |
|
|
|
800 |
# print model layout to screen |
|
|
801 |
if (!is.null(label_input)) { |
|
|
802 |
label_inputs <- list() |
|
|
803 |
for (i in 1:length(label_input)) { |
|
|
804 |
eval(parse(text = paste0("label_inputs$label_input_layer_", as.character(i), "<- label_input_layer_", as.character(i)))) |
|
|
805 |
} |
|
|
806 |
model <- keras::keras_model(inputs = c(label_inputs, input_tensor_1, input_tensor_2), outputs = output_tensor) |
|
|
807 |
} else { |
|
|
808 |
model <- keras::keras_model(inputs = list(input_tensor_1, input_tensor_2), outputs = output_tensor) |
|
|
809 |
} |
|
|
810 |
|
|
|
811 |
if (compile) { |
|
|
812 |
model <- compile_model(model = model, label_smoothing = label_smoothing, layer_dense = layer_dense, |
|
|
813 |
solver = solver, learning_rate = learning_rate, loss_fn = loss_fn, |
|
|
814 |
num_output_layers = num_output_layers, label_noise_matrix = label_noise_matrix, |
|
|
815 |
bal_acc = bal_acc, f1_metric = f1_metric, auc_metric = auc_metric) |
|
|
816 |
} |
|
|
817 |
|
|
|
818 |
argg <- c(as.list(environment())) |
|
|
819 |
model <- add_hparam_list(model, argg) |
|
|
820 |
reticulate::py_set_attr(x = model, name = "hparam", value = model$hparam) |
|
|
821 |
|
|
|
822 |
if (verbose) model$summary() |
|
|
823 |
return(model) |
|
|
824 |
} |