|
a |
|
b/R/callbacks.R |
|
|
1 |
#' Create model card |
|
|
2 |
#' |
|
|
3 |
#' Log information about model, hyperparameters, generator options, training data, scores etc |
|
|
4 |
#' |
|
|
5 |
#' @param model_card_path Directory for model card logs. |
|
|
6 |
#' @param run_name Name of training run. |
|
|
7 |
#' @param argumentList List of training arguments. |
|
|
8 |
#' @examplesIf reticulate::py_module_available("tensorflow") |
|
|
9 |
#' model_card_cb <- function(model_card_path = NULL, run_name, argumentList) |
|
|
10 |
#' mc <- model_card_cb(model_card_path = tempdir(), run_name = 'run_1', |
|
|
11 |
#' argumentList = list(learning_rate = 0.01)) |
|
|
12 |
#' |
|
|
13 |
#' @returns Keras callback writing model cards every epoch. |
|
|
14 |
#' @export |
|
|
15 |
model_card_cb <- function(model_card_path = NULL, run_name, argumentList) { |
|
|
16 |
|
|
|
17 |
model_card_cb_py_class <- reticulate::PyClass("model_card_cb", |
|
|
18 |
inherit = tensorflow::tf$keras$callbacks$Callback, |
|
|
19 |
list( |
|
|
20 |
|
|
|
21 |
`__init__` = function(self, model_card_path, run_name) { |
|
|
22 |
self$model_card_path <- model_card_path |
|
|
23 |
self$start_time <- Sys.time() |
|
|
24 |
self$mc_dir <- file.path(model_card_path, run_name) |
|
|
25 |
self$param_list <- list() |
|
|
26 |
self$argumentList <- argumentList |
|
|
27 |
NULL |
|
|
28 |
}, |
|
|
29 |
|
|
|
30 |
# collect all data |
|
|
31 |
on_train_begin = function(self, logs) { |
|
|
32 |
|
|
|
33 |
if (!dir.exists(self$mc_dir)) { |
|
|
34 |
dir.create(self$mc_dir) |
|
|
35 |
} else { |
|
|
36 |
#stop("Directory already exists. Change run_name") |
|
|
37 |
} |
|
|
38 |
|
|
|
39 |
self$param_list <- self$model$hparam |
|
|
40 |
self$param_list$train_model_args <- argumentList |
|
|
41 |
for (n in names(self$param_list$train_model_args)) { |
|
|
42 |
self$param_list$train_model_args[[n]] <- eval(self$param_list$train_model_args[[n]]) |
|
|
43 |
} |
|
|
44 |
self$param_list$train_model_args[["model"]] <- NULL |
|
|
45 |
self$param_list$model_summary <- summary(self$model) |
|
|
46 |
self$param_list$training_start_time <- format(self$start_time, "%a %b %d %X %Y") |
|
|
47 |
|
|
|
48 |
gpu_info <- tensorflow::tf$config$list_physical_devices('GPU') |
|
|
49 |
self$param_list$gpu_info[["number GPUs"]] <- length(gpu_info) |
|
|
50 |
if (length(gpu_info) > 0) { |
|
|
51 |
for (i in 1:length(gpu_info)) { |
|
|
52 |
self$param_list$gpu_info[[paste0("GPU", i)]] <- |
|
|
53 |
tensorflow::tf$config$experimental$get_device_details( |
|
|
54 |
gpu_info[[i]] |
|
|
55 |
) |
|
|
56 |
} |
|
|
57 |
} |
|
|
58 |
|
|
|
59 |
saveRDS(self$param_list, paste0(self$mc_dir, "/epoch_0_param_list.rds")) |
|
|
60 |
|
|
|
61 |
}, |
|
|
62 |
|
|
|
63 |
# update training scores |
|
|
64 |
on_epoch_end = function(self, epoch, logs) { |
|
|
65 |
time_passed <- as.double(difftime(Sys.time(), self$start_time, units = "secs")) |
|
|
66 |
self$param_list[["training_time"]] <- time_passed |
|
|
67 |
|
|
|
68 |
if (epoch == 0) { |
|
|
69 |
m <- unlist(logs) |
|
|
70 |
m <- c(m, epoch, time_passed) %>% matrix(nrow = 1) %>% as.data.frame() |
|
|
71 |
names(m) <- c(names(logs), "processing_step", "time") |
|
|
72 |
self$param_list[["logs"]] <- m |
|
|
73 |
} else { |
|
|
74 |
m <- unlist(logs) |
|
|
75 |
m <- c(m, epoch, time_passed) %>% matrix(nrow = 1) %>% as.data.frame() |
|
|
76 |
names(m) <- c(names(logs), "processing_step", "time") |
|
|
77 |
m <- rbind(self$param_list[["logs"]], m) |
|
|
78 |
self$param_list[["logs"]] <- reticulate::r_to_py(m) |
|
|
79 |
} |
|
|
80 |
|
|
|
81 |
saveRDS(self$param_list, paste0(self$mc_dir, "/epoch_", epoch + 1, "_param_list.rds")) |
|
|
82 |
} |
|
|
83 |
|
|
|
84 |
)) |
|
|
85 |
|
|
|
86 |
model_card_cb_py_class(model_card_path = model_card_path, |
|
|
87 |
run_name = run_name) |
|
|
88 |
|
|
|
89 |
} |
|
|
90 |
|
|
|
91 |
|
|
|
92 |
|
|
|
93 |
#' Stop training callback |
|
|
94 |
#' |
|
|
95 |
#' Stop training after specified time. |
|
|
96 |
#' |
|
|
97 |
#' @param stop_time Time in seconds after which to stop training. |
|
|
98 |
#' @examplesIf reticulate::py_module_available("tensorflow") |
|
|
99 |
#' est <- early_stopping_time_cb(stop_time = 60) |
|
|
100 |
#' |
|
|
101 |
#' @returns A Keras callback that stops training after specified time. |
|
|
102 |
#' @export |
|
|
103 |
early_stopping_time_cb <- function(stop_time = NULL) { |
|
|
104 |
|
|
|
105 |
early_stopping_time_cb_py_class <- reticulate::PyClass("early_stopping_time_cb", |
|
|
106 |
inherit = tensorflow::tf$keras$callbacks$Callback, |
|
|
107 |
list( |
|
|
108 |
|
|
|
109 |
`__init__` = function(self, stop_time) { |
|
|
110 |
self$start_time <- Sys.time() |
|
|
111 |
self$stop_time <- stop_time |
|
|
112 |
NULL |
|
|
113 |
}, |
|
|
114 |
|
|
|
115 |
on_batch_end = function(self, epoch, logs) { |
|
|
116 |
time_passed <- as.double(difftime(Sys.time(), self$start_time, units = "secs")) |
|
|
117 |
if (time_passed > self$stop_time) { |
|
|
118 |
self$model$stop_training <- TRUE |
|
|
119 |
} |
|
|
120 |
} |
|
|
121 |
|
|
|
122 |
)) |
|
|
123 |
|
|
|
124 |
early_stopping_time_cb_py_class(stop_time = stop_time) |
|
|
125 |
|
|
|
126 |
} |
|
|
127 |
|
|
|
128 |
#' Early stopping callback |
|
|
129 |
#' |
|
|
130 |
#' @param early_stopping_time Time in seconds after which to stop training. |
|
|
131 |
#' @param early_stopping_patience Stop training if val_loss does not improve for \code{early_stopping_patience}. |
|
|
132 |
#' @param by_time Whether to use time or patience as metric. |
|
|
133 |
#' @returns Keras callback; stop training after specified time. |
|
|
134 |
#' @noRd |
|
|
135 |
early_stopping_cb <- function(early_stopping_patience = 0, early_stopping_time, by_time = TRUE) { |
|
|
136 |
|
|
|
137 |
if (by_time) { |
|
|
138 |
early_stopping_time_cb(stop_time = early_stopping_time) |
|
|
139 |
} else { |
|
|
140 |
keras::callback_early_stopping(patience = early_stopping_patience) |
|
|
141 |
} |
|
|
142 |
} |
|
|
143 |
|
|
|
144 |
#' Log callback |
|
|
145 |
#' |
|
|
146 |
#' @param path_log Path to output directory. |
|
|
147 |
#' @param run_name Name of output file is run_name + ".csv". |
|
|
148 |
#' @returns Keras callback, writes epoch scores to csv file. |
|
|
149 |
#' @noRd |
|
|
150 |
log_cb <- function(path_log, run_name) { |
|
|
151 |
keras::callback_csv_logger( |
|
|
152 |
paste0(path_log, "/", run_name, ".csv"), |
|
|
153 |
separator = ";", |
|
|
154 |
append = TRUE) |
|
|
155 |
} |
|
|
156 |
|
|
|
157 |
#' Learning_rate callback |
|
|
158 |
#' |
|
|
159 |
#' @inheritParams train_model |
|
|
160 |
#' @returns Keras callback, reduces learning rate. |
|
|
161 |
#' @noRd |
|
|
162 |
reduce_lr_cb <- function(patience, |
|
|
163 |
cooldown, |
|
|
164 |
lr_plateau_factor, |
|
|
165 |
monitor = "val_acc") { |
|
|
166 |
keras::callback_reduce_lr_on_plateau( |
|
|
167 |
monitor = monitor, |
|
|
168 |
factor = lr_plateau_factor, |
|
|
169 |
patience = patience, |
|
|
170 |
cooldown = cooldown) |
|
|
171 |
} |
|
|
172 |
|
|
|
173 |
#' Checkpoint callback |
|
|
174 |
#' |
|
|
175 |
#' @inheritParams train_model |
|
|
176 |
#' @returns Keras callback, store model checkpoint. |
|
|
177 |
#' @noRd |
|
|
178 |
checkpoint_cb <- function(filepath_checkpoints, |
|
|
179 |
save_weights_only, |
|
|
180 |
save_best_only, |
|
|
181 |
save_freq, |
|
|
182 |
monitor = "val_loss") { |
|
|
183 |
|
|
|
184 |
if (is.logical(save_best_only)) { |
|
|
185 |
if (save_best_only) { |
|
|
186 |
warning("save_best_only should not be boolean variabel, but list or NULL. Using val_loss as monitor.") |
|
|
187 |
save_best_only <- list(monitor = "val_loss") |
|
|
188 |
} else { |
|
|
189 |
warning("save_best_only should not be boolean variabel, but list or NULL.") |
|
|
190 |
save_best_only <- NULL |
|
|
191 |
} |
|
|
192 |
} |
|
|
193 |
|
|
|
194 |
if (is.null(save_best_only) | !is.null(save_best_only$monitor)) { |
|
|
195 |
|
|
|
196 |
keras::callback_model_checkpoint(filepath = filepath_checkpoints, |
|
|
197 |
save_weights_only = save_weights_only, |
|
|
198 |
save_best_only = !is.null(save_best_only), |
|
|
199 |
verbose = 1, |
|
|
200 |
save_freq = "epoch", |
|
|
201 |
monitor = monitor) |
|
|
202 |
|
|
|
203 |
} else { |
|
|
204 |
|
|
|
205 |
cp_cb <- reticulate::PyClass("cp_cb", |
|
|
206 |
inherit = tensorflow::tf$keras$callbacks$Callback, |
|
|
207 |
list( |
|
|
208 |
|
|
|
209 |
`__init__` = function(self, filepath_checkpoints, save_freq, save_weights_only) { |
|
|
210 |
self$filepath_checkpoints <- filepath_checkpoints |
|
|
211 |
self$save_freq <- save_freq |
|
|
212 |
self$save_weights_only <- save_weights_only |
|
|
213 |
NULL |
|
|
214 |
}, |
|
|
215 |
|
|
|
216 |
on_epoch_end = function(self, epoch, logs) { |
|
|
217 |
if ((epoch + 1) %% self$save_freq == 0) { |
|
|
218 |
|
|
|
219 |
formatted_path <- gsub("\\{epoch:03d\\}", sprintf("%03d", epoch + 1), self$filepath_checkpoints) |
|
|
220 |
formatted_path <- gsub("\\{val_loss:.2f\\}", sprintf("%.2f", logs$val_loss), formatted_path) |
|
|
221 |
formatted_path <- gsub("\\{val_acc:.3f\\}", sprintf("%.3f", logs$val_acc), formatted_path) |
|
|
222 |
print(formatted_path) |
|
|
223 |
if (self$save_weights_only) { |
|
|
224 |
keras::save_model_hdf5(self$model, formatted_path) |
|
|
225 |
} else { |
|
|
226 |
keras::save_model_weights_hdf5(self$model, formatted_path) |
|
|
227 |
} |
|
|
228 |
} |
|
|
229 |
} |
|
|
230 |
|
|
|
231 |
)) |
|
|
232 |
|
|
|
233 |
return(cp_cb(filepath_checkpoints = filepath_checkpoints, |
|
|
234 |
save_freq = save_best_only$save_freq, |
|
|
235 |
save_weights_only = save_weights_only)) |
|
|
236 |
|
|
|
237 |
} |
|
|
238 |
|
|
|
239 |
} |
|
|
240 |
|
|
|
241 |
#' Non model hyperparameter callback |
|
|
242 |
#' |
|
|
243 |
#' Get hyperparameters excluding model parameters. |
|
|
244 |
#' |
|
|
245 |
#' @inheritParams train_model |
|
|
246 |
#' @returns Keras callback, track model hyperparameters. |
|
|
247 |
#' @noRd |
|
|
248 |
hyper_param_model_outside_cb <- function(path_tensorboard, run_name, wavenet_format, cnn_format, model, vocabulary, path, reverse_complement, |
|
|
249 |
vocabulary_label, maxlen, epochs, max_queue_size, lr_plateau_factor, batch_size, |
|
|
250 |
patience, cooldown, steps_per_epoch, step, shuffle_file_order) { |
|
|
251 |
|
|
|
252 |
train_hparams <- list( |
|
|
253 |
run_name = run_name, |
|
|
254 |
vocabulary = paste(vocabulary, collapse = ","), |
|
|
255 |
path = paste(unlist(path), collapse = ", "), |
|
|
256 |
reverse_complement = paste(reverse_complement), |
|
|
257 |
vocabulary_label = paste(vocabulary_label, collapse = ", "), |
|
|
258 |
epochs = epochs, |
|
|
259 |
max_queue_size = max_queue_size, |
|
|
260 |
lr_plateau_factor = lr_plateau_factor, |
|
|
261 |
batch_size = batch_size, |
|
|
262 |
patience = patience, |
|
|
263 |
cooldown = cooldown, |
|
|
264 |
steps_per_epoch = steps_per_epoch, |
|
|
265 |
step = step, |
|
|
266 |
shuffle_file_order = shuffle_file_order |
|
|
267 |
) |
|
|
268 |
#hparams$update(model$hparam) |
|
|
269 |
model_hparams <- vector("list") |
|
|
270 |
for (i in names(model$hparam)) { |
|
|
271 |
model_hparams[[i]] <- model$hparam[[i]] |
|
|
272 |
} |
|
|
273 |
|
|
|
274 |
hparams_R <- c(train_hparams, model_hparams) |
|
|
275 |
|
|
|
276 |
keep_entry_index <- rep(TRUE, length(hparams_R)) |
|
|
277 |
for (i in 1:length(hparams_R)) { |
|
|
278 |
|
|
|
279 |
if (length(hparams_R[[i]]) == 0) { |
|
|
280 |
keep_entry_index[i] <- FALSE |
|
|
281 |
} |
|
|
282 |
|
|
|
283 |
if (length(hparams_R[[i]]) > 1) { |
|
|
284 |
hparams_R[[i]] <- paste(hparams_R[[i]], collapse = " ") |
|
|
285 |
} |
|
|
286 |
} |
|
|
287 |
hparams_R <- hparams_R[keep_entry_index] |
|
|
288 |
|
|
|
289 |
hparams <- reticulate::dict(hparams_R) |
|
|
290 |
hp <- reticulate::import("tensorboard.plugins.hparams.api") |
|
|
291 |
hp$KerasCallback(file.path(path_tensorboard, run_name), hparams, trial_id = run_name) |
|
|
292 |
} |
|
|
293 |
|
|
|
294 |
#' Model hyperparameter callback |
|
|
295 |
#' |
|
|
296 |
#' Get model hyperparameters. |
|
|
297 |
#' |
|
|
298 |
#' @inheritParams train_model |
|
|
299 |
#' @returns Keras callback, track training hyperparameters. |
|
|
300 |
#' @noRd |
|
|
301 |
hyper_param_with_model_cb <- function(default_arguments, model, path_tensorboard, run_name, train_type, path, train_val_ratio, batch_size, |
|
|
302 |
epochs, max_queue_size, lr_plateau_factor, |
|
|
303 |
patience, cooldown, steps_per_epoch, step, shuffle_file_order, initial_epoch, vocabulary, learning_rate, |
|
|
304 |
shuffle_input, vocabulary_label, solver, file_limit, reverse_complement, wavenet_format, cnn_format) { |
|
|
305 |
|
|
|
306 |
model_hparam <- vector("list") |
|
|
307 |
model_hparam_names <- vector("list") |
|
|
308 |
for (i in 1:length(default_arguments)) { |
|
|
309 |
if (is.null(default_arguments[[i]])) { |
|
|
310 |
model_hparam[i] <- "NULL" |
|
|
311 |
} else { |
|
|
312 |
model_hparam[i] <- default_arguments[i] |
|
|
313 |
} |
|
|
314 |
} |
|
|
315 |
names(model_hparam) <- names(default_arguments) |
|
|
316 |
# hparam from train_model |
|
|
317 |
learning_rate <- keras::k_eval(model$optimizer$lr) |
|
|
318 |
solver <- stringr::str_to_lower(model$optimizer$get_config()["name"]) |
|
|
319 |
|
|
|
320 |
train_hparam_names <- c("train_type", "path", "train_val_ratio", "run_name", "batch_size", "epochs", "max_queue_size", "lr_plateau_factor", |
|
|
321 |
"patience", "cooldown", "steps_per_epoch", "step", "shuffle_file_order", "initial_epoch", "vocabulary", "learning_rate", |
|
|
322 |
"shuffle_input", "vocabulary_label", "solver", "file_limit", "reverse_complement", "wavenet_format", "cnn_format") |
|
|
323 |
train_hparam <- vector("list") |
|
|
324 |
for (i in 1:length(train_hparam_names)) { |
|
|
325 |
if (is.null(eval(parse(text=train_hparam_names[i])))) { |
|
|
326 |
train_hparam[[i]] <- "NULL" |
|
|
327 |
} else if (length(eval(parse(text=train_hparam_names[i])) > 1)) { |
|
|
328 |
train_hparam[[i]] <- toString(eval(parse(text=train_hparam_names[i]))) |
|
|
329 |
if (length(train_hparam[[i]]) > 1) { |
|
|
330 |
train_hparam[[i]] <- paste(train_hparam[[i]], collapse = " ") |
|
|
331 |
} |
|
|
332 |
} else { |
|
|
333 |
train_hparam[[i]] <- eval(parse(text=train_hparam_names[i])) |
|
|
334 |
if (length(train_hparam[[i]]) > 1) { |
|
|
335 |
train_hparam[[i]] <- paste(train_hparam[[i]], collapse = " ") |
|
|
336 |
} |
|
|
337 |
} |
|
|
338 |
} |
|
|
339 |
names(train_hparam) <- train_hparam_names |
|
|
340 |
hparams_R <- c(train_hparam, model_hparam) |
|
|
341 |
hparams <- reticulate::dict(hparams_R) |
|
|
342 |
hp <- reticulate::import("tensorboard.plugins.hparams.api") |
|
|
343 |
return(hp$KerasCallback(file.path(path_tensorboard, run_name), hparams, trial_id = run_name)) |
|
|
344 |
} |
|
|
345 |
|
|
|
346 |
#' Tensorboard callback |
|
|
347 |
#' |
|
|
348 |
#' @inheritParams train_model |
|
|
349 |
#' @returns Keras callback, write tensorboard logs. |
|
|
350 |
#' @noRd |
|
|
351 |
tensorboard_cb <- function(path_tensorboard, run_name) { |
|
|
352 |
keras::callback_tensorboard(file.path(path_tensorboard, run_name), |
|
|
353 |
write_graph = TRUE, |
|
|
354 |
histogram_freq = 1, |
|
|
355 |
write_images = TRUE, |
|
|
356 |
write_grads = TRUE) |
|
|
357 |
} |
|
|
358 |
|
|
|
359 |
#' Function arguments callback |
|
|
360 |
#' |
|
|
361 |
#' Print train_model call in text field of tensorboard. |
|
|
362 |
#' |
|
|
363 |
#' @inheritParams train_model |
|
|
364 |
#' @param argumentList List of function arguments. |
|
|
365 |
#' @returns Keras callback, track arguments of `train_model` function. |
|
|
366 |
#' @noRd |
|
|
367 |
function_args_cb <- function(argumentList, path_tensorboard, run_name) { |
|
|
368 |
|
|
|
369 |
argAsChar <- as.character(argumentList) |
|
|
370 |
argText <- vector("character") |
|
|
371 |
if (length(argumentList$path) > 1) { |
|
|
372 |
|
|
|
373 |
argsInQuotes <- c("path_checkpoint", "run_name", "solver", "format", "output_format", |
|
|
374 |
"path_tensorboard", "path_file_log", "train_type", "ambiguous_nuc", "added_label_path", "added_label_names", |
|
|
375 |
"train_val_split_csv", "target_from_csv") |
|
|
376 |
} else { |
|
|
377 |
argsInQuotes <- c("path", "path_val", "path_checkpoint", "run_name", "solver", "output_format", |
|
|
378 |
"path_tensorboard", "path_file_log", "train_type", "ambiguous_nuc", "format", "added_label_path", "added_label_names", |
|
|
379 |
"train_val_split_csv", "target_from_csv") |
|
|
380 |
} |
|
|
381 |
argText[1] <- "train_model(" |
|
|
382 |
for (i in 2:(length(argumentList) - 1)) { |
|
|
383 |
arg <- argAsChar[[i]] |
|
|
384 |
if (names(argumentList)[i] %in% argsInQuotes) { |
|
|
385 |
if (arg == "NULL") { |
|
|
386 |
argText[i] <- paste0(names(argumentList)[i], " = ", arg, ",") |
|
|
387 |
} else { |
|
|
388 |
argText[i] <- paste0(names(argumentList)[i], " = ", '\"', arg, '\"', ",") |
|
|
389 |
} |
|
|
390 |
} else { |
|
|
391 |
argText[i] <- paste0(names(argumentList)[i], " = ", arg, ",") |
|
|
392 |
} |
|
|
393 |
} |
|
|
394 |
i <- length(argumentList) |
|
|
395 |
if (names(argumentList)[i] %in% argsInQuotes) { |
|
|
396 |
if (arg == "NULL") { |
|
|
397 |
argText[i] <- paste0(names(argumentList)[i], " = ", argAsChar[[i]], ")") |
|
|
398 |
} else { |
|
|
399 |
argText[i] <- paste0(names(argumentList)[i], " = ", '\"', argAsChar[[i]], '\"', ")") |
|
|
400 |
} |
|
|
401 |
} else { |
|
|
402 |
argText[i] <- paste0(names(argumentList)[i], " = ", argAsChar[[i]], ")") |
|
|
403 |
} |
|
|
404 |
|
|
|
405 |
# write function arguments as text in tensorboard |
|
|
406 |
trainArguments <- keras::callback_lambda( |
|
|
407 |
on_train_begin = function(logs) { |
|
|
408 |
file.writer <- tensorflow::tf$summary$create_file_writer(file.path(path_tensorboard, run_name)) |
|
|
409 |
file.writer$set_as_default() |
|
|
410 |
tensorflow::tf$summary$text(name="Arguments", data = argText, step = 0L) |
|
|
411 |
file.writer$flush() |
|
|
412 |
} |
|
|
413 |
) |
|
|
414 |
trainArguments |
|
|
415 |
} |
|
|
416 |
|
|
|
417 |
#' Tensorboard callback wrapper |
|
|
418 |
#' |
|
|
419 |
#' @inheritParams train_model |
|
|
420 |
#' @returns Keras callback, wrapper for all callbacks involving tensorboard. |
|
|
421 |
#' @noRd |
|
|
422 |
tensorboard_complete_cb <- function(default_arguments, model, path_tensorboard, run_name, train_type, path, train_val_ratio, batch_size, |
|
|
423 |
epochs, max_queue_size, lr_plateau_factor, patience, cooldown, steps_per_epoch, step, shuffle_file_order, initial_epoch, vocabulary, learning_rate, |
|
|
424 |
shuffle_input, vocabulary_label, solver, file_limit, reverse_complement, wavenet_format, cnn_format, create_model_function, vocabulary_size, gen_cb, |
|
|
425 |
argumentList, maxlen, labelGen, labelByFolder, vocabulary_label_size, tb_images = FALSE, stateful, target_middle, num_train_files, path_file_log, |
|
|
426 |
proportion_per_seq, skip_amb_nuc, max_samples, proportion_entries, train_with_gen, count_files = TRUE) { |
|
|
427 |
l <- vector("list") |
|
|
428 |
|
|
|
429 |
l[[1]] <- hyper_param_model_outside_cb(path_tensorboard = path_tensorboard, run_name = run_name, wavenet_format = wavenet_format, cnn_format = cnn_format, model = model, |
|
|
430 |
vocabulary = vocabulary, path = path, reverse_complement = reverse_complement, vocabulary_label = vocabulary_label, |
|
|
431 |
maxlen = maxlen, epochs = epochs, max_queue_size = max_queue_size, lr_plateau_factor = lr_plateau_factor, |
|
|
432 |
batch_size = batch_size, patience = patience, cooldown = cooldown, steps_per_epoch = steps_per_epoch, |
|
|
433 |
step = step, shuffle_file_order = shuffle_file_order) |
|
|
434 |
|
|
|
435 |
l[[2]] <- tensorboard_cb(path_tensorboard = path_tensorboard, run_name = run_name) |
|
|
436 |
l[[3]] <- function_args_cb(argumentList = argumentList, path_tensorboard = path_tensorboard, run_name = run_name) |
|
|
437 |
|
|
|
438 |
if (train_with_gen & count_files) { |
|
|
439 |
|
|
|
440 |
proportion_training_files_cb <- reticulate::PyClass("proportion_training_files_cb", |
|
|
441 |
inherit = tensorflow::tf$keras$callbacks$Callback, |
|
|
442 |
list( |
|
|
443 |
|
|
|
444 |
`__init__` = function(self, num_train_files, path_file_log, path_tensorboard, run_name, vocabulary_label, |
|
|
445 |
path, train_type, start_index, proportion_per_seq, max_samples, step, |
|
|
446 |
proportion_entries) { |
|
|
447 |
self$num_train_files <- num_train_files |
|
|
448 |
self$path_file_log <- path_file_log |
|
|
449 |
self$path_tensorboard <- path_tensorboard |
|
|
450 |
self$run_name <- run_name |
|
|
451 |
self$vocabulary_label <- vocabulary_label |
|
|
452 |
self$path <- path |
|
|
453 |
self$train_type <- train_type |
|
|
454 |
self$proportion_per_seq <- proportion_per_seq |
|
|
455 |
self$max_samples <- max_samples |
|
|
456 |
self$step <- step |
|
|
457 |
self$start_index <- 1 |
|
|
458 |
self$first_epoch <- TRUE |
|
|
459 |
self$description <- "" |
|
|
460 |
self$proportion_entries <- proportion_entries |
|
|
461 |
NULL |
|
|
462 |
}, |
|
|
463 |
|
|
|
464 |
on_epoch_end = function(self, epoch, logs) { |
|
|
465 |
if (is.null(self$proportion_entries)) self$proportion_entries <- 1 |
|
|
466 |
file.writer <- tensorflow::tf$summary$create_file_writer(file.path(self$path_tensorboard, self$run_name)) |
|
|
467 |
file.writer$set_as_default() |
|
|
468 |
files_used <- utils::read.csv(self$path_file_log, stringsAsFactors = FALSE, header = FALSE) |
|
|
469 |
if (self$train_type == "label_folder") { |
|
|
470 |
if (self$first_epoch) { |
|
|
471 |
if (length(self$step) == 1) self$step <- rep(self$step, length(vocabulary_label)) |
|
|
472 |
if (length(self$proportion_per_seq) == 1) { |
|
|
473 |
self$proportion_per_seq <- rep(self$proportion_per_seq, length(self$vocabulary_label)) |
|
|
474 |
} |
|
|
475 |
if (length(max_samples) == 1) self$max_samples <- rep(max_samples, length(vocabulary_label)) |
|
|
476 |
|
|
|
477 |
for (i in 1:length(self$vocabulary_label)) { |
|
|
478 |
if (is.null(self$max_samples)) { |
|
|
479 |
self$description[i] <- paste0("Using step size ", self$step[i], ", proportion_entries ", |
|
|
480 |
self$proportion_entries * 100, "% and ", |
|
|
481 |
ifelse(is.null(self$proportion_per_seq[i]), 1, |
|
|
482 |
self$proportion_per_seq[i]) * 100, "% per sequence") |
|
|
483 |
} else { |
|
|
484 |
self$description[i] <- paste0("Using step size ", self$step[i], ", ", |
|
|
485 |
ifelse(is.null(self$proportion_per_seq[i]), 1, |
|
|
486 |
self$proportion_per_seq[i]) * 100, "% per sequence, maximum of ", |
|
|
487 |
self$max_samples[i], " samples per file and proportion_entries ", |
|
|
488 |
self$proportion_entries * 100, "%") |
|
|
489 |
} |
|
|
490 |
} |
|
|
491 |
self$first_epoch <- FALSE |
|
|
492 |
} |
|
|
493 |
|
|
|
494 |
for (i in 1:length(self$vocabulary_label)) { |
|
|
495 |
files_of_class <- sum(stringr::str_detect( |
|
|
496 |
files_used[ , 1], paste(unlist(self$path[[i]]), collapse = "|") |
|
|
497 |
)) |
|
|
498 |
files_percentage <- 100 * files_of_class/self$num_train_files[i] |
|
|
499 |
tensorflow::tf$summary$scalar(name = paste0("training files seen (%): '", |
|
|
500 |
self$vocabulary_label[i], "'"), data = files_percentage, step = epoch, |
|
|
501 |
description = self$description[i]) |
|
|
502 |
} |
|
|
503 |
} else { |
|
|
504 |
files_percentage <- 100 * nrow(files_used)/self$num_train_files |
|
|
505 |
if (is.null(self$max_samples)) { |
|
|
506 |
description <- paste0("Using step size ", step, |
|
|
507 |
", proportion_entries ", self$proportion_entries * 100, "% and ", |
|
|
508 |
ifelse(is.null(self$proportion_per_seq), 1, |
|
|
509 |
self$proportion_per_seq) * 100, "% per sequence") |
|
|
510 |
} else { |
|
|
511 |
description <- paste0("Using step size ", step, ", ", |
|
|
512 |
ifelse(is.null(self$proportion_per_seq), 1, |
|
|
513 |
self$proportion_per_seq) * 100, "% per sequence, maximum of ", |
|
|
514 |
self$max_samples, " samples per file and proportion_entries ", |
|
|
515 |
self$proportion_entries * 100, "%") |
|
|
516 |
|
|
|
517 |
} |
|
|
518 |
if (self$train_type == "label_rds") { |
|
|
519 |
description <- paste0("Using step size ", |
|
|
520 |
ifelse(is.null(self$proportion_per_seq), 1, |
|
|
521 |
self$proportion_per_seq) * 100, "% per sequence and maximum of ", |
|
|
522 |
self$max_samples, " samples per file.") |
|
|
523 |
} |
|
|
524 |
tensorflow::tf$summary$scalar(name = paste("training files seen (%)"), data = files_percentage, step = epoch, |
|
|
525 |
description = description) |
|
|
526 |
} |
|
|
527 |
|
|
|
528 |
file.writer$flush() |
|
|
529 |
} |
|
|
530 |
|
|
|
531 |
)) |
|
|
532 |
|
|
|
533 |
|
|
|
534 |
l[[4]] <- proportion_training_files_cb(num_train_files = num_train_files, path_file_log = path_file_log, path_tensorboard = path_tensorboard, run_name = run_name, |
|
|
535 |
vocabulary_label = vocabulary_label, path = path, train_type = train_type, proportion_per_seq = proportion_per_seq, |
|
|
536 |
max_samples = max_samples, step = step, proportion_entries = proportion_entries) |
|
|
537 |
#names(l) <- c("hyper_param_model_outside", "tensorboard", "function_args","proportion_training_files") |
|
|
538 |
} else { |
|
|
539 |
#names(l) <- c("hyper_param_model_outside", "tensorboard", "function_args") |
|
|
540 |
} |
|
|
541 |
return(l) |
|
|
542 |
} |
|
|
543 |
|
|
|
544 |
#' Reset states callback |
|
|
545 |
#' |
|
|
546 |
#' Reset states at start/end of validation and whenever file changes. Can be used for stateful LSTM. |
|
|
547 |
#' |
|
|
548 |
#' @param path_file_log Path to log of training files. |
|
|
549 |
#' @param path_file_logVal Path to log of validation files. |
|
|
550 |
#' @examplesIf reticulate::py_module_available("tensorflow") |
|
|
551 |
#' rs <- reset_states_cb(path_file_log = tempfile(), path_file_logVal = tempfile()) |
|
|
552 |
#' |
|
|
553 |
#' @returns A keras callback that resets states of LSTM layers. |
|
|
554 |
#' @export |
|
|
555 |
reset_states_cb <- function(path_file_log, path_file_logVal) { |
|
|
556 |
|
|
|
557 |
reset_states_cb_py_class <- reticulate::PyClass("reset_states_cb", |
|
|
558 |
inherit = tensorflow::tf$keras$callbacks$Callback, |
|
|
559 |
list( |
|
|
560 |
|
|
|
561 |
`__init__` = function(self, path_file_log, path_file_logVal) { |
|
|
562 |
self$path_file_log <- path_file_log |
|
|
563 |
self$path_file_logVal <- path_file_logVal |
|
|
564 |
self$num_files_old <- 0 |
|
|
565 |
self$num_files_new <- 0 |
|
|
566 |
self$num_files_old_val <- 0 |
|
|
567 |
self$num_files_new_val <- 0 |
|
|
568 |
NULL |
|
|
569 |
}, |
|
|
570 |
|
|
|
571 |
on_test_begin = function(self, epoch, logs) { |
|
|
572 |
self$model$reset_states() |
|
|
573 |
}, |
|
|
574 |
|
|
|
575 |
on_test_end = function(self, epoch, logs) { |
|
|
576 |
self$model$reset_states() |
|
|
577 |
}, |
|
|
578 |
|
|
|
579 |
on_train_batch_begin = function(self, batch, logs) { |
|
|
580 |
files_used <- readLines(self$path_file_log) |
|
|
581 |
self$num_files_new <- length(files_used) |
|
|
582 |
if (self$num_files_new > self$num_files_old) { |
|
|
583 |
self$model$reset_states() |
|
|
584 |
self$num_files_old <- self$num_files_new |
|
|
585 |
} |
|
|
586 |
}, |
|
|
587 |
|
|
|
588 |
on_test_batch_begin = function(self, batch, logs) { |
|
|
589 |
files_used <- readLines(self$path_file_logVal) |
|
|
590 |
self$num_files_new_val <- length(files_used) |
|
|
591 |
if (self$num_files_new_val > self$num_files_old_val) { |
|
|
592 |
self$model$reset_states() |
|
|
593 |
self$num_files_old_val <- self$num_files_new_val |
|
|
594 |
} |
|
|
595 |
} |
|
|
596 |
|
|
|
597 |
)) |
|
|
598 |
|
|
|
599 |
reset_states_cb_py_class(path_file_log = path_file_log, path_file_logVal = path_file_logVal) |
|
|
600 |
} |
|
|
601 |
|
|
|
602 |
#' Validation after training callback |
|
|
603 |
#' |
|
|
604 |
#' Do validation only once at end of training. |
|
|
605 |
#' |
|
|
606 |
#' @param gen.val Validation generator |
|
|
607 |
#' @param validation_steps Number of validation steps. |
|
|
608 |
#' @examplesIf reticulate::py_module_available("tensorflow") |
|
|
609 |
#' maxlen <- 20 |
|
|
610 |
#' model <- create_model_lstm_cnn(layer_lstm = 8, maxlen = maxlen) |
|
|
611 |
#' gen <- get_generator(train_type = 'dummy_gen', model = model, batch_size = 4, maxlen = maxlen) |
|
|
612 |
#' vat <- validation_after_training_cb(gen.val = gen, validation_steps = 10) |
|
|
613 |
#' |
|
|
614 |
#' @returns Keras callback, apply validation only after training. |
|
|
615 |
#' @export |
|
|
616 |
validation_after_training_cb <- function(gen.val, validation_steps) { |
|
|
617 |
|
|
|
618 |
validation_after_training_cb_py_class <- reticulate::PyClass("validation_after_training_cb", |
|
|
619 |
inherit = tensorflow::tf$keras$callbacks$Callback, |
|
|
620 |
list( |
|
|
621 |
|
|
|
622 |
`__init__` = function(self, gen.val, validation_steps) { |
|
|
623 |
self$gen.val <- gen.val |
|
|
624 |
self$validation_steps <- validation_steps |
|
|
625 |
NULL |
|
|
626 |
}, |
|
|
627 |
|
|
|
628 |
|
|
|
629 |
on_train_end = function(self, logs = list()) { |
|
|
630 |
validation_eval <- keras::evaluate_generator( |
|
|
631 |
object = self$model, |
|
|
632 |
generator = gen.val, |
|
|
633 |
steps = self$validation_steps, |
|
|
634 |
max_queue_size = 10, |
|
|
635 |
workers = 1, |
|
|
636 |
callbacks = NULL |
|
|
637 |
) |
|
|
638 |
self$model$val_loss <- validation_eval[["loss"]] |
|
|
639 |
self$model$val_acc <- validation_eval[["acc"]] |
|
|
640 |
} |
|
|
641 |
|
|
|
642 |
)) |
|
|
643 |
|
|
|
644 |
validation_after_training_cb_py_class(gen.val = gen.val, validation_steps = validation_steps) |
|
|
645 |
|
|
|
646 |
} |
|
|
647 |
|
|
|
648 |
#' Confusion matrix callback. |
|
|
649 |
#' |
|
|
650 |
#' Create a confusion matrix to display under tensorboard images. |
|
|
651 |
#' |
|
|
652 |
#' @inheritParams train_model |
|
|
653 |
#' @param confMatLabels Names of classes. |
|
|
654 |
#' @param cm_dir Directory that contains confusion matrix files. |
|
|
655 |
#' @examplesIf reticulate::py_module_available("tensorflow") |
|
|
656 |
#' cm <- conf_matrix_cb(path_tensorboard = tempfile(), run_name = 'run_1', |
|
|
657 |
#' confMatLabels = c('label_1', 'label_2'), cm_dir = tempfile()) |
|
|
658 |
#' |
|
|
659 |
#' @returns Keras callback, plot confusion matrix in tensorboard. |
|
|
660 |
#' @export |
|
|
661 |
conf_matrix_cb <- function(path_tensorboard, run_name, confMatLabels, cm_dir) { |
|
|
662 |
|
|
|
663 |
conf_matrix_cb_py_class <- reticulate::PyClass("conf_matrix_cb", |
|
|
664 |
inherit = tensorflow::tf$keras$callbacks$Callback, |
|
|
665 |
list( |
|
|
666 |
|
|
|
667 |
`__init__` = function(self, cm_dir, path_tensorboard, run_name, confMatLabels, graphics = "png") { |
|
|
668 |
self$cm_dir <- cm_dir |
|
|
669 |
self$path_tensorboard <- path_tensorboard |
|
|
670 |
self$run_name <- run_name |
|
|
671 |
self$plot_path_train <- tempfile(pattern = "", fileext = paste0(".", graphics)) |
|
|
672 |
self$plot_path_val <- tempfile(pattern = "", fileext = paste0(".", graphics)) |
|
|
673 |
self$confMatLabels <- confMatLabels |
|
|
674 |
self$epoch <- 0 |
|
|
675 |
self$train_images <- NULL |
|
|
676 |
self$val_images <- NULL |
|
|
677 |
self$graphics <- graphics |
|
|
678 |
self$epoch <- 0 |
|
|
679 |
self$text_size <- NULL |
|
|
680 |
self$round_dig <- 3 |
|
|
681 |
if (length(confMatLabels) < 8) { |
|
|
682 |
self$text_size <- (10 - (max(nchar(confMatLabels)) * 0.15)) * (0.95^length(confMatLabels)) |
|
|
683 |
} |
|
|
684 |
self$cm_display_percentage <- TRUE |
|
|
685 |
NULL |
|
|
686 |
}, |
|
|
687 |
|
|
|
688 |
on_epoch_begin = function(self, epoch, logs) { |
|
|
689 |
#suppressMessages(library(yardstick)) |
|
|
690 |
if (epoch > 0) { |
|
|
691 |
|
|
|
692 |
cm_train <- readRDS(file.path(self$cm_dir, paste0("cm_train_", epoch-1, ".rds"))) |
|
|
693 |
cm_val <- readRDS(file.path(self$cm_dir, paste0("cm_val_", epoch-1, ".rds"))) |
|
|
694 |
if (self$cm_display_percentage) { |
|
|
695 |
cm_train <- cm_perc(cm_train, self$round_dig) |
|
|
696 |
cm_val <- cm_perc(cm_val, self$round_dig) |
|
|
697 |
} |
|
|
698 |
cm_train <- create_conf_mat_obj(cm_train, self$confMatLabels) |
|
|
699 |
cm_val <- create_conf_mat_obj(cm_val, self$confMatLabels) |
|
|
700 |
|
|
|
701 |
|
|
|
702 |
suppressMessages( |
|
|
703 |
cm_plot_train <- ggplot2::autoplot(cm_train, type = "heatmap") + |
|
|
704 |
ggplot2::scale_fill_gradient(low="#D6EAF8", high = "#2E86C1") + |
|
|
705 |
ggplot2::theme(axis.text.x = |
|
|
706 |
ggplot2::element_text(angle=90,hjust=1, size = self$text_size)) + |
|
|
707 |
ggplot2::theme(axis.text.y = |
|
|
708 |
ggplot2::element_text(size = self$text_size)) |
|
|
709 |
) |
|
|
710 |
|
|
|
711 |
suppressMessages( |
|
|
712 |
cm_plot_val <- ggplot2::autoplot(cm_val, type = "heatmap") + |
|
|
713 |
ggplot2::scale_fill_gradient(low="#D6EAF8", high = "#2E86C1") + |
|
|
714 |
ggplot2::theme(axis.text.x = |
|
|
715 |
ggplot2::element_text(angle=90,hjust=1, size = self$text_size)) + |
|
|
716 |
ggplot2::theme(axis.text.y = |
|
|
717 |
ggplot2::element_text(size = self$text_size)) |
|
|
718 |
) |
|
|
719 |
|
|
|
720 |
if (length(confMatLabels) > 4) { |
|
|
721 |
plot_size <- (length(confMatLabels) * 1.3) + 1 |
|
|
722 |
} else { |
|
|
723 |
plot_size <- length(confMatLabels) * 3 |
|
|
724 |
} |
|
|
725 |
|
|
|
726 |
if (self$graphics == "png") { |
|
|
727 |
|
|
|
728 |
suppressMessages(ggplot2::ggsave(filename = self$plot_path_train, plot = cm_plot_train, device = "png", |
|
|
729 |
width = plot_size, |
|
|
730 |
height = plot_size, |
|
|
731 |
units = "cm")) |
|
|
732 |
p_cm_train <- png::readPNG(self$plot_path_train) |
|
|
733 |
|
|
|
734 |
suppressMessages(ggplot2::ggsave(filename = self$plot_path_val, plot = cm_plot_val, device = "png", |
|
|
735 |
width = plot_size, |
|
|
736 |
height = plot_size, |
|
|
737 |
units = "cm")) |
|
|
738 |
p_cm_val <- png::readPNG(self$plot_path_val) |
|
|
739 |
|
|
|
740 |
} else { |
|
|
741 |
|
|
|
742 |
suppressMessages(ggplot2::ggsave(filename = self$plot_path_train, plot = cm_plot_train, device = "jpg", |
|
|
743 |
width = plot_size, |
|
|
744 |
height = plot_size, |
|
|
745 |
units = "cm")) |
|
|
746 |
p_cm_train <- jpeg::readJPEG(self$plot_path_train) |
|
|
747 |
|
|
|
748 |
suppressMessages(ggplot2::ggsave(filename = self$plot_path_val, plot = cm_plot_val, device = "jpg", |
|
|
749 |
width = plot_size, |
|
|
750 |
height = plot_size, |
|
|
751 |
units = "cm")) |
|
|
752 |
p_cm_train <- jpeg::readJPEG(self$plot_path_val) |
|
|
753 |
} |
|
|
754 |
|
|
|
755 |
p_cm_train <- as.array(p_cm_train) |
|
|
756 |
p_cm_train <- array(p_cm_train, dim = c(1, dim(p_cm_train))) |
|
|
757 |
p_cm_val <- as.array(p_cm_val) |
|
|
758 |
p_cm_val <- array(p_cm_val, dim = c(1, dim(p_cm_val))) |
|
|
759 |
|
|
|
760 |
num_images <- 1 |
|
|
761 |
train_images <- array(0, dim = c(num_images, dim(p_cm_train)[-1])) |
|
|
762 |
train_images[1, , , ] <- p_cm_train |
|
|
763 |
self$train_images <- train_images |
|
|
764 |
|
|
|
765 |
val_images <- array(0, dim = c(num_images, dim(p_cm_val)[-1])) |
|
|
766 |
val_images[1, , , ] <- p_cm_val |
|
|
767 |
self$val_images <- val_images |
|
|
768 |
file.writer <- tensorflow::tf$summary$create_file_writer(file.path(self$path_tensorboard, self$run_name)) |
|
|
769 |
file.writer$set_as_default() |
|
|
770 |
tensorflow::tf$summary$image(name = "confusion matrix train", data = self$train_images, step = as.integer(epoch-1)) |
|
|
771 |
tensorflow::tf$summary$image(name = "confusion matrix validation", data = self$val_images, step = as.integer(epoch-1)) |
|
|
772 |
file.writer$flush() |
|
|
773 |
self$epoch <- epoch |
|
|
774 |
} |
|
|
775 |
}, |
|
|
776 |
|
|
|
777 |
on_train_end = function(self, logs) { |
|
|
778 |
|
|
|
779 |
epoch <- self$epoch + 1 |
|
|
780 |
|
|
|
781 |
# create confusion matrix for last val step manually (storing cm when calling reset_state) |
|
|
782 |
for (i in 1:length(self$model$metrics)) { |
|
|
783 |
if (self$model$metrics[[i]]$name == "balanced_acc") { |
|
|
784 |
self$model$metrics[[i]]$reset_state() |
|
|
785 |
} |
|
|
786 |
} |
|
|
787 |
|
|
|
788 |
cm_train <- readRDS(file.path(self$cm_dir, paste0("cm_train_", epoch-1, ".rds"))) |
|
|
789 |
cm_val <- readRDS(file.path(self$cm_dir, paste0("cm_val_", epoch-1, ".rds"))) |
|
|
790 |
if (self$cm_display_percentage) { |
|
|
791 |
cm_train <- cm_perc(cm_train, self$round_dig) |
|
|
792 |
cm_val <- cm_perc(cm_val, self$round_dig) |
|
|
793 |
} |
|
|
794 |
cm_train <- create_conf_mat_obj(cm_train, self$confMatLabels) |
|
|
795 |
cm_val <- create_conf_mat_obj(cm_val, self$confMatLabels) |
|
|
796 |
|
|
|
797 |
|
|
|
798 |
suppressMessages( |
|
|
799 |
cm_plot_train <- ggplot2::autoplot(cm_train, type = "heatmap") + |
|
|
800 |
ggplot2::scale_fill_gradient(low="#D6EAF8", high = "#2E86C1") + |
|
|
801 |
ggplot2::theme(axis.text.x = |
|
|
802 |
ggplot2::element_text(angle=90,hjust=1, size = self$text_size)) + |
|
|
803 |
ggplot2::theme(axis.text.y = |
|
|
804 |
ggplot2::element_text(size = self$text_size)) |
|
|
805 |
) |
|
|
806 |
|
|
|
807 |
suppressMessages( |
|
|
808 |
cm_plot_val <- ggplot2::autoplot(cm_val, type = "heatmap") + |
|
|
809 |
ggplot2::scale_fill_gradient(low="#D6EAF8", high = "#2E86C1") + |
|
|
810 |
ggplot2::theme(axis.text.x = |
|
|
811 |
ggplot2::element_text(angle=90,hjust=1, size = self$text_size)) + |
|
|
812 |
ggplot2::theme(axis.text.y = |
|
|
813 |
ggplot2::element_text(size = self$text_size)) |
|
|
814 |
) |
|
|
815 |
|
|
|
816 |
if (length(confMatLabels) > 4) { |
|
|
817 |
plot_size <- (length(confMatLabels) * 1.3) + 1 |
|
|
818 |
} else { |
|
|
819 |
plot_size <- length(confMatLabels) * 3 |
|
|
820 |
} |
|
|
821 |
|
|
|
822 |
if (self$graphics == "png") { |
|
|
823 |
|
|
|
824 |
suppressMessages(ggplot2::ggsave(filename = self$plot_path_train, plot = cm_plot_train, device = "png", |
|
|
825 |
width = plot_size, |
|
|
826 |
height = plot_size, |
|
|
827 |
units = "cm")) |
|
|
828 |
p_cm_train <- png::readPNG(self$plot_path_train) |
|
|
829 |
|
|
|
830 |
suppressMessages(ggplot2::ggsave(filename = self$plot_path_val, plot = cm_plot_val, device = "png", |
|
|
831 |
width = plot_size, |
|
|
832 |
height = plot_size, |
|
|
833 |
units = "cm")) |
|
|
834 |
p_cm_val <- png::readPNG(self$plot_path_val) |
|
|
835 |
|
|
|
836 |
} else { |
|
|
837 |
|
|
|
838 |
suppressMessages(ggplot2::ggsave(filename = self$plot_path_train, plot = cm_plot_train, device = "jpg", |
|
|
839 |
width = plot_size, |
|
|
840 |
height = plot_size, |
|
|
841 |
units = "cm")) |
|
|
842 |
p_cm_train <- jpeg::readJPEG(self$plot_path_train) |
|
|
843 |
|
|
|
844 |
suppressMessages(ggplot2::ggsave(filename = self$plot_path_val, plot = cm_plot_val, device = "jpg", |
|
|
845 |
width = plot_size, |
|
|
846 |
height = plot_size, |
|
|
847 |
units = "cm")) |
|
|
848 |
p_cm_train <- jpeg::readJPEG(self$plot_path_val) |
|
|
849 |
} |
|
|
850 |
|
|
|
851 |
p_cm_train <- as.array(p_cm_train) |
|
|
852 |
p_cm_train <- array(p_cm_train, dim = c(1, dim(p_cm_train))) |
|
|
853 |
p_cm_val <- as.array(p_cm_val) |
|
|
854 |
p_cm_val <- array(p_cm_val, dim = c(1, dim(p_cm_val))) |
|
|
855 |
|
|
|
856 |
num_images <- 1 |
|
|
857 |
train_images <- array(0, dim = c(num_images, dim(p_cm_train)[-1])) |
|
|
858 |
train_images[1, , , ] <- p_cm_train |
|
|
859 |
self$train_images <- train_images |
|
|
860 |
|
|
|
861 |
val_images <- array(0, dim = c(num_images, dim(p_cm_val)[-1])) |
|
|
862 |
val_images[1, , , ] <- p_cm_val |
|
|
863 |
self$val_images <- val_images |
|
|
864 |
file.writer <- tensorflow::tf$summary$create_file_writer(file.path(self$path_tensorboard, self$run_name)) |
|
|
865 |
file.writer$set_as_default() |
|
|
866 |
tensorflow::tf$summary$image(name = "confusion matrix train", data = self$train_images, step = as.integer(epoch-1)) |
|
|
867 |
tensorflow::tf$summary$image(name = "confusion matrix validation", data = self$val_images, step = as.integer(epoch-1)) |
|
|
868 |
file.writer$flush() |
|
|
869 |
} |
|
|
870 |
)) |
|
|
871 |
conf_matrix_cb_py_class(path_tensorboard = path_tensorboard, |
|
|
872 |
run_name = run_name, |
|
|
873 |
confMatLabels = confMatLabels, |
|
|
874 |
cm_dir = cm_dir) |
|
|
875 |
} |
|
|
876 |
|
|
|
877 |
|
|
|
878 |
get_callbacks <- function(default_arguments, model, path_tensorboard, run_name, train_type, |
|
|
879 |
path, train_val_ratio, batch_size, epochs, format, |
|
|
880 |
max_queue_size, lr_plateau_factor, patience, cooldown, path_checkpoint, |
|
|
881 |
steps_per_epoch, step, shuffle_file_order, initial_epoch, vocabulary, |
|
|
882 |
learning_rate, shuffle_input, vocabulary_label, solver, dataset_val, |
|
|
883 |
file_limit, reverse_complement, wavenet_format, cnn_format, |
|
|
884 |
create_model_function = NULL, vocabulary_size, gen_cb, argumentList, |
|
|
885 |
maxlen, labelGen, labelByFolder, vocabulary_label_size, tb_images, |
|
|
886 |
target_middle, path_file_log, proportion_per_seq, validation_steps, |
|
|
887 |
train_val_split_csv, n_gram, path_file_logVal, model_card, |
|
|
888 |
skip_amb_nuc, max_samples, proportion_entries, path_log, output, |
|
|
889 |
train_with_gen, random_sampling, reduce_lr_on_plateau, |
|
|
890 |
save_weights_only, save_best_only, reset_states, early_stopping_time, |
|
|
891 |
validation_only_after_training, gen.val, target_from_csv) { |
|
|
892 |
|
|
|
893 |
if (output$checkpoints) { |
|
|
894 |
# create folder for checkpoints using run_name |
|
|
895 |
checkpoint_dir <- paste0(path_checkpoint, "/", run_name) |
|
|
896 |
dir.create(checkpoint_dir, showWarnings = FALSE) |
|
|
897 |
if (!is.list(model$output) & !is.null(gen.val)) { |
|
|
898 |
# filename with epoch, validation loss and validation accuracy |
|
|
899 |
filepath_checkpoints <- file.path(checkpoint_dir, "Ep.{epoch:03d}-val_loss{val_loss:.2f}-val_acc{val_acc:.3f}.hdf5") |
|
|
900 |
} else { |
|
|
901 |
|
|
|
902 |
# if (is.null(gen.val)) { |
|
|
903 |
# filepath_checkpoints <- file.path(checkpoint_dir, "Ep.{epoch:03d}-loss{loss:.2f}-acc{acc:.3f}.hdf5") |
|
|
904 |
# } else { |
|
|
905 |
filepath_checkpoints <- file.path(checkpoint_dir, "Ep.{epoch:03d}.hdf5") |
|
|
906 |
if ((is.list(save_best_only) && !is.null(save_best_only$monitor)) & is.null(dataset_val)) { |
|
|
907 |
warning("save_best_only not implemented for multi target or training without validation data. Setting save_best_only to NULL.") |
|
|
908 |
save_best_only <- NULL |
|
|
909 |
} |
|
|
910 |
#} |
|
|
911 |
|
|
|
912 |
} |
|
|
913 |
} |
|
|
914 |
|
|
|
915 |
# Check if path_file_log is unique |
|
|
916 |
if (!is.null(path_file_log) && dir.exists(path_file_log)) { |
|
|
917 |
stop(paste0("path_file_log entry is already present. Please give this file a unique name.")) |
|
|
918 |
} |
|
|
919 |
|
|
|
920 |
count_files <- !random_sampling |
|
|
921 |
callbacks <- list() |
|
|
922 |
callback_names <- NULL |
|
|
923 |
|
|
|
924 |
if (reduce_lr_on_plateau) { |
|
|
925 |
if (is.list(model$outputs)) { |
|
|
926 |
monitor <- "val_loss" |
|
|
927 |
} else { |
|
|
928 |
monitor <- "val_acc" |
|
|
929 |
} |
|
|
930 |
callbacks[[1]] <- reduce_lr_cb(patience = patience, cooldown = cooldown, |
|
|
931 |
lr_plateau_factor = lr_plateau_factor, |
|
|
932 |
monitor = monitor) |
|
|
933 |
callback_names <- c("reduce_lr", callback_names) |
|
|
934 |
} |
|
|
935 |
|
|
|
936 |
if (!is.null(path_log)) { |
|
|
937 |
callbacks <- c(callbacks, log_cb(path_log, run_name)) |
|
|
938 |
callback_names <- c("log", callback_names) |
|
|
939 |
} |
|
|
940 |
|
|
|
941 |
if (!output$tensorboard) tb_images <- FALSE |
|
|
942 |
if (output$tensorboard) { |
|
|
943 |
|
|
|
944 |
# add balanced acc score |
|
|
945 |
model <- manage_metrics(model) |
|
|
946 |
if (train_with_gen) { |
|
|
947 |
num_targets <- ifelse(train_type == "lm", length(vocabulary), length(vocabulary_label)) |
|
|
948 |
} else { |
|
|
949 |
num_targets <- dim(dataset_val$Y)[2] |
|
|
950 |
} |
|
|
951 |
contains_macro_acc_metric <- FALSE |
|
|
952 |
for (i in 1:length(model$metrics)) { |
|
|
953 |
if (model$metrics[[i]]$name == "balanced_acc") contains_macro_acc_metric <- TRUE |
|
|
954 |
} |
|
|
955 |
|
|
|
956 |
metric_names <- vector("character", length(model$metrics)) |
|
|
957 |
for (i in 1:length(model$metrics)) { |
|
|
958 |
metric_names[i] <- model$metrics[[i]]$name |
|
|
959 |
} |
|
|
960 |
loss_index <- stringr::str_detect(metric_names, "loss") |
|
|
961 |
|
|
|
962 |
if (!contains_macro_acc_metric) { |
|
|
963 |
if (tb_images) { |
|
|
964 |
if (!reticulate::py_has_attr(model, "cm_dir")) { |
|
|
965 |
cm_dir <- file.path(tempdir(), paste(sample(letters, 7), collapse = "")) |
|
|
966 |
dir.create(cm_dir) |
|
|
967 |
model$cm_dir <- cm_dir |
|
|
968 |
} |
|
|
969 |
|
|
|
970 |
metrics <- c(model$metrics[!loss_index], balanced_acc_wrapper(num_targets = num_targets, cm_dir = model$cm_dir)) |
|
|
971 |
} |
|
|
972 |
} else { |
|
|
973 |
metrics <- c(model$metrics[!loss_index]) |
|
|
974 |
} |
|
|
975 |
|
|
|
976 |
# count files in path |
|
|
977 |
if (train_type == "label_rds" | train_type == "lm_rds") format <- "rds" |
|
|
978 |
if (train_with_gen) { |
|
|
979 |
num_train_files <- count_files(path = path, format = format, train_type = train_type, |
|
|
980 |
target_from_csv = target_from_csv, |
|
|
981 |
train_val_split_csv = train_val_split_csv) |
|
|
982 |
} else { |
|
|
983 |
num_train_files <- 1 |
|
|
984 |
} |
|
|
985 |
|
|
|
986 |
complete_tb <- tensorboard_complete_cb(default_arguments = default_arguments, model = model, path_tensorboard = path_tensorboard, run_name = run_name, train_type = train_type, |
|
|
987 |
path = path, train_val_ratio = train_val_ratio, batch_size = batch_size, epochs = epochs, |
|
|
988 |
max_queue_size = max_queue_size, lr_plateau_factor = lr_plateau_factor, patience = patience, cooldown = cooldown, |
|
|
989 |
steps_per_epoch = steps_per_epoch, step = step, shuffle_file_order = shuffle_file_order, initial_epoch = initial_epoch, vocabulary = vocabulary, |
|
|
990 |
learning_rate = learning_rate, shuffle_input = shuffle_input, vocabulary_label = vocabulary_label, solver = solver, |
|
|
991 |
file_limit = file_limit, reverse_complement = reverse_complement, wavenet_format = wavenet_format, cnn_format = cnn_format, |
|
|
992 |
create_model_function = NULL, vocabulary_size = vocabulary_size, gen_cb = gen_cb, argumentList = argumentList, |
|
|
993 |
maxlen = maxlen, labelGen = labelGen, labelByFolder = labelByFolder, vocabulary_label_size = vocabulary_label_size, tb_images = FALSE, |
|
|
994 |
target_middle = target_middle, num_train_files = num_train_files, path_file_log = path_file_log, proportion_per_seq = proportion_per_seq, |
|
|
995 |
skip_amb_nuc = skip_amb_nuc, max_samples = max_samples, proportion_entries = proportion_entries, |
|
|
996 |
train_with_gen = train_with_gen, count_files = !random_sampling) |
|
|
997 |
callbacks <- c(callbacks, complete_tb) |
|
|
998 |
callback_names <- c(callback_names, names(complete_tb)) |
|
|
999 |
} |
|
|
1000 |
|
|
|
1001 |
if (output$checkpoints) { |
|
|
1002 |
if (wavenet_format) { |
|
|
1003 |
# can only save weights for wavenet |
|
|
1004 |
save_weights_only <- TRUE |
|
|
1005 |
} |
|
|
1006 |
callbacks <- c(callbacks, checkpoint_cb(filepath_checkpoints = filepath_checkpoints, save_weights_only = save_weights_only, |
|
|
1007 |
save_best_only = save_best_only)) |
|
|
1008 |
callback_names <- c(callback_names, "checkpoint") |
|
|
1009 |
} |
|
|
1010 |
|
|
|
1011 |
if (reset_states) { |
|
|
1012 |
callbacks <- c(callbacks, reset_states_cb(path_file_log = path_file_log, path_file_logVal = path_file_logVal)) |
|
|
1013 |
callback_names <- c(callback_names, "reset_states") |
|
|
1014 |
} |
|
|
1015 |
|
|
|
1016 |
if (!is.null(early_stopping_time)) { |
|
|
1017 |
callbacks <- c(callbacks, early_stopping_cb(early_stopping_time = early_stopping_time)) |
|
|
1018 |
callback_names <- c(callback_names, "early_stopping") |
|
|
1019 |
} |
|
|
1020 |
|
|
|
1021 |
if (validation_only_after_training) { |
|
|
1022 |
if (!train_with_gen) stop("Validation after training only implemented for generator") |
|
|
1023 |
callbacks <- c(callbacks, validation_after_training_cb(gen.val = gen.val, validation_steps = validation_steps)) |
|
|
1024 |
callback_names <- c(callback_names, "validation_after_training") |
|
|
1025 |
} |
|
|
1026 |
|
|
|
1027 |
if (!is.null(model_card)) { |
|
|
1028 |
callbacks <- c(callbacks, model_card_cb(model_card_path = model_card$path_model_card, |
|
|
1029 |
run_name = run_name, argumentList = argumentList)) |
|
|
1030 |
} |
|
|
1031 |
|
|
|
1032 |
if (tb_images) { |
|
|
1033 |
if (is.list(model$output)) { |
|
|
1034 |
warning("Tensorboard images (confusion matrix) not implemented for model with multiple outputs. |
|
|
1035 |
Setting tb_images to FALSE") |
|
|
1036 |
tb_images <- FALSE |
|
|
1037 |
} |
|
|
1038 |
|
|
|
1039 |
if (model$loss == "binary_crossentropy") { |
|
|
1040 |
warning("Tensorboard images (confusion matrix) not implemented for sigmoid activation in last layer. |
|
|
1041 |
Setting tb_images to FALSE") |
|
|
1042 |
tb_images <- FALSE |
|
|
1043 |
} |
|
|
1044 |
} |
|
|
1045 |
|
|
|
1046 |
if (tb_images) { |
|
|
1047 |
|
|
|
1048 |
confMatLabels <- vocabulary_label |
|
|
1049 |
if (train_with_gen & train_type == "lm") { |
|
|
1050 |
if (is.null(n_gram) || n_gram == 1) { |
|
|
1051 |
confMatLabels <- vocabulary |
|
|
1052 |
} else { |
|
|
1053 |
l <- list() |
|
|
1054 |
for (i in 1:n_gram) { |
|
|
1055 |
l[[i]] <- vocabulary |
|
|
1056 |
} |
|
|
1057 |
confMatLabels <- expand.grid(l) %>% apply(1, paste0) %>% apply(2, paste, collapse = "") %>% sort() |
|
|
1058 |
} |
|
|
1059 |
} |
|
|
1060 |
|
|
|
1061 |
model <- model %>% keras::compile(loss = model$loss, |
|
|
1062 |
optimizer = model$optimizer, metrics = metrics) |
|
|
1063 |
|
|
|
1064 |
if (length(confMatLabels) > 16) { |
|
|
1065 |
message("Cannot display confusion matrix with more than 16 labels.") |
|
|
1066 |
} else { |
|
|
1067 |
|
|
|
1068 |
callbacks <- c(callbacks, conf_matrix_cb(path_tensorboard = path_tensorboard, |
|
|
1069 |
run_name = run_name, |
|
|
1070 |
confMatLabels = confMatLabels, |
|
|
1071 |
cm_dir = model$cm_dir)) |
|
|
1072 |
callback_names <- c(callback_names, "conf_matrix") |
|
|
1073 |
} |
|
|
1074 |
} |
|
|
1075 |
|
|
|
1076 |
return(callbacks) |
|
|
1077 |
} |