<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<meta name="description" content="deepG">
<title>Getting started • deepG</title>
<!-- favicons --><link rel="icon" type="image/png" sizes="16x16" href="../favicon-16x16.png">
<link rel="icon" type="image/png" sizes="32x32" href="../favicon-32x32.png">
<link rel="apple-touch-icon" type="image/png" sizes="180x180" href="../apple-touch-icon.png">
<link rel="apple-touch-icon" type="image/png" sizes="120x120" href="../apple-touch-icon-120x120.png">
<link rel="apple-touch-icon" type="image/png" sizes="76x76" href="../apple-touch-icon-76x76.png">
<link rel="apple-touch-icon" type="image/png" sizes="60x60" href="../apple-touch-icon-60x60.png">
<script src="../deps/jquery-3.6.0/jquery-3.6.0.min.js"></script><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link href="../deps/bootstrap-5.3.1/bootstrap.min.css" rel="stylesheet">
<script src="../deps/bootstrap-5.3.1/bootstrap.bundle.min.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous">
<!-- bootstrap-toc --><script src="https://cdn.jsdelivr.net/gh/afeld/bootstrap-toc@v1.0.1/dist/bootstrap-toc.min.js" integrity="sha256-4veVQbu7//Lk5TSmc7YV48MxtMy98e26cf5MrgZYnwo=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.11/clipboard.min.js" integrity="sha512-7O5pXpc0oCRrxk8RUfDYFgn0nO1t+jLuIOQdOMRp4APB7uZ4vSjspzp5y6YDtDs4VzUSTbWzBFZ/LKJhnyFOKw==" crossorigin="anonymous" referrerpolicy="no-referrer"></script><!-- search --><script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/6.4.6/fuse.js" integrity="sha512-zv6Ywkjyktsohkbp9bb45V6tEMoWhzFzXis+LrMehmJZZSys19Yxf1dopHx7WzIKxr5tK2dVcYmaCk2uqdjF4A==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/autocomplete.js/0.38.0/autocomplete.jquery.min.js" integrity="sha512-GU9ayf+66Xx2TmpxqJpliWbT5PiGYxpaG8rfnBEk1LL8l1KGkRShhngwdXK1UgqhAzWpZHSiYPc09/NwDQIGyg==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/mark.min.js" integrity="sha512-5CYOlHXGh6QpOFA/TeTylKLWfB3ftPsde7AnmhuitiTX4K5SqCLBeKro6sPS8ilsz1Q4NRx3v8Ko2IBiszzdww==" crossorigin="anonymous"></script><!-- pkgdown --><script src="../pkgdown.js"></script><meta property="og:title" content="Getting started">
<meta property="og:description" content="deepG">
<meta property="og:image" content="https://genomenet.github.io/deepG/logo.png">
<!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body>
<a href="#main" class="visually-hidden-focusable">Skip to contents</a>
<nav class="navbar fixed-top navbar-light navbar-expand-lg bg-light" data-bs-theme="light"><div class="container">
<a class="navbar-brand me-2" href="../index.html">deepG</a>
<small class="nav-text text-default me-auto" data-bs-toggle="tooltip" data-bs-placement="bottom" title="Released version">0.3.0</small>
<button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbar" aria-controls="navbar" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar" class="collapse navbar-collapse ms-3">
<ul class="navbar-nav me-auto">
<li class="nav-item">
<a class="nav-link" href="../reference/index.html">
<span class="fa fa fa fa-file-alt"></span>
Reference
</a>
</li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" data-bs-toggle="dropdown" role="button" aria-expanded="false" aria-haspopup="true" id="dropdown-notebooks">Notebooks</a>
<div class="dropdown-menu" aria-labelledby="dropdown-notebooks">
<a class="external-link dropdown-item" href="https://colab.research.google.com/drive/175jIdXcDcgPUvaBo2rH2Lupbpjnp5O7G?usp=sharing">deepG tutorial</a>
<a class="external-link dropdown-item" href="https://colab.research.google.com/drive/1Eolc0koMNM1zkuO4XyVM58ImeF1BpRiH?usp=sharing">Read-length level: Human contamination</a>
<a class="external-link dropdown-item" href="https://colab.research.google.com/drive/1yiXSwFafXpMLHaov9iBTQLIDZ6bK1zYX?usp=sharing">Locus level: CRISPR detection</a>
<a class="external-link dropdown-item" href="https://colab.research.google.com/drive/1G7bOFEX87cZNrM2tdRtTdkrZn5fM__g0?usp=sharing">Gene level: 16S rRNA detection</a>
<a class="external-link dropdown-item" href="https://colab.research.google.com/drive/1BCggL-tfQF136YeJ8cKKi-zoBEDMgkNh?usp=sharing">Genome level: Bacterial morphology (Sporulation)</a>
<a class="external-link dropdown-item" href="https://colab.research.google.com/drive/10xpRzGd3JeBAbqQYSCxzQUMctt01sx9D?usp=sharing">Full metagenome level: Colorectal cancer prediction</a>
<a class="external-link dropdown-item" href="https://colab.research.google.com/drive/1kyYK7IU7GSfdpDzO_a8U3_qD4i3zTu6w?usp=sharing">BERT with deepG</a>
</div>
</li>
<li class="active nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" data-bs-toggle="dropdown" role="button" aria-expanded="false" aria-haspopup="true" id="dropdown-tutorials">Tutorials</a>
<div class="dropdown-menu" aria-labelledby="dropdown-tutorials">
<a class="dropdown-item" href="../articles/getting_started.html">Getting Started</a>
<a class="dropdown-item" href="../articles/training_types.html">Training types</a>
<a class="dropdown-item" href="../articles/data_generator.html">Data generator</a>
<a class="dropdown-item" href="../articles/using_tb.html">Using tensorboard</a>
<a class="dropdown-item" href="../articles/integrated_gradient.html">Integrated Gradient</a>
</div>
</li>
</ul>
<form class="form-inline my-2 my-lg-0" role="search">
<input type="search" class="form-control me-sm-2" aria-label="Toggle navigation" name="search-input" data-search-index="../search.json" id="search-input" placeholder="Search for" autocomplete="off">
</form>
<ul class="navbar-nav">
<li class="nav-item">
<a class="external-link nav-link" href="https://github.com/GenomeNet/deepG/" aria-label="github">
<span class="fab fa fab fa-github fa-lg"></span>
</a>
</li>
</ul>
</div>
</div>
</nav><div class="container template-article">
<div class="row">
<main id="main" class="col-md-9"><div class="page-header">
<img src="../logo.png" class="logo" alt=""><h1>Getting started</h1>
<small class="dont-index">Source: <a href="https://github.com/GenomeNet/deepG/blob/HEAD/vignettes/getting_started.Rmd" class="external-link"><code>vignettes/getting_started.Rmd</code></a></small>
<div class="d-none name"><code>getting_started.Rmd</code></div>
</div>
<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co">#devtools::install_github("GenomeNet/deepG")</span></span>
<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://github.com/GenomeNet/deepG" class="external-link">deepG</a></span><span class="op">)</span></span>
<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://magrittr.tidyverse.org" class="external-link">magrittr</a></span><span class="op">)</span></span></code></pre></div>
<style type="text/css">
mark.in {
background-color: CornflowerBlue;
}
mark.out {
background-color: IndianRed;
}
</style>
<div class="section level2">
<h2 id="introduction">Introduction<a class="anchor" aria-label="anchor" href="#introduction"></a>
</h2>
<p>The goal of the deepG package is to speed up the development of
bioinformatical tools for sequence classification, homology detection
and other bioinformatical tasks. The package offers several functions
for</p>
<ul>
<li>Data (pre-) processing</li>
<li>Deep learning architectures</li>
<li>Model training</li>
<li>Model evaluation</li>
<li>Visualizing training progress</li>
</ul>
<div class="section level3">
<h3 id="create-dummy-data">Create dummy data<a class="anchor" aria-label="anchor" href="#create-dummy-data"></a>
</h3>
<p>We create two simple dummy training and validation data sets. Both
consist of random <tt>ACGT</tt> sequences but the first category has a
probability of 40% each for drawing <tt>G</tt> or <tt>C</tt> and the
second has equal probability for each nucleotide (first category has
around 80% <tt>GC</tt> content and second one around 50%).</p>
<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/Random.html" class="external-link">set.seed</a></span><span class="op">(</span><span class="fl">123</span><span class="op">)</span></span>
<span><span class="va">vocabulary</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"A"</span>, <span class="st">"C"</span>, <span class="st">"G"</span>, <span class="st">"T"</span><span class="op">)</span></span>
<span></span>
<span><span class="va">data_type</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"train_1"</span>, <span class="st">"train_2"</span>, <span class="st">"val_1"</span>, <span class="st">"val_2"</span><span class="op">)</span></span>
<span></span>
<span><span class="kw">for</span> <span class="op">(</span><span class="va">i</span> <span class="kw">in</span> <span class="fl">1</span><span class="op">:</span><span class="fu"><a href="https://rdrr.io/r/base/length.html" class="external-link">length</a></span><span class="op">(</span><span class="va">data_type</span><span class="op">)</span><span class="op">)</span> <span class="op">{</span></span>
<span> </span>
<span> <span class="va">temp_file</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/tempfile.html" class="external-link">tempfile</a></span><span class="op">(</span><span class="op">)</span></span>
<span> <span class="fu"><a href="https://rdrr.io/r/base/assign.html" class="external-link">assign</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/paste.html" class="external-link">paste0</a></span><span class="op">(</span><span class="va">data_type</span><span class="op">[</span><span class="va">i</span><span class="op">]</span>, <span class="st">"_dir"</span><span class="op">)</span>, <span class="va">temp_file</span><span class="op">)</span></span>
<span> <span class="fu"><a href="https://rdrr.io/r/base/files2.html" class="external-link">dir.create</a></span><span class="op">(</span><span class="va">temp_file</span><span class="op">)</span></span>
<span> </span>
<span> <span class="kw">if</span> <span class="op">(</span><span class="va">i</span> <span class="op"><a href="https://rdrr.io/r/base/Arithmetic.html" class="external-link">%%</a></span> <span class="fl">2</span> <span class="op">==</span> <span class="fl">1</span><span class="op">)</span> <span class="op">{</span></span>
<span> <span class="va">header</span> <span class="op"><-</span> <span class="st">"high_gc"</span></span>
<span> <span class="va">prob</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0.1</span>, <span class="fl">0.4</span>, <span class="fl">0.4</span>, <span class="fl">0.1</span><span class="op">)</span></span>
<span> <span class="op">}</span> <span class="kw">else</span> <span class="op">{</span></span>
<span> <span class="va">header</span> <span class="op"><-</span> <span class="st">"equal_dist"</span></span>
<span> <span class="va">prob</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/rep.html" class="external-link">rep</a></span><span class="op">(</span><span class="fl">0.25</span>, <span class="fl">4</span><span class="op">)</span></span>
<span> <span class="op">}</span></span>
<span> </span>
<span> <span class="va">fasta_name_start</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html" class="external-link">paste0</a></span><span class="op">(</span><span class="va">header</span>, <span class="st">"_"</span>, <span class="va">data_type</span><span class="op">[</span><span class="va">i</span><span class="op">]</span>, <span class="st">"file"</span><span class="op">)</span></span>
<span> </span>
<span> <span class="fu"><a href="../reference/create_dummy_data.html">create_dummy_data</a></span><span class="op">(</span>file_path <span class="op">=</span> <span class="va">temp_file</span>,</span>
<span> num_files <span class="op">=</span> <span class="fl">1</span>,</span>
<span> seq_length <span class="op">=</span> <span class="fl">10000</span>, </span>
<span> num_seq <span class="op">=</span> <span class="fl">1</span>,</span>
<span> header <span class="op">=</span> <span class="va">header</span>,</span>
<span> prob <span class="op">=</span> <span class="va">prob</span>,</span>
<span> fasta_name_start <span class="op">=</span> <span class="va">fasta_name_start</span>,</span>
<span> vocabulary <span class="op">=</span> <span class="va">vocabulary</span><span class="op">)</span></span>
<span> </span>
<span><span class="op">}</span></span></code></pre></div>
</div>
<div class="section level3">
<h3 id="training">Training<a class="anchor" aria-label="anchor" href="#training"></a>
</h3>
<p>We can now train a model that can differentiate between the two
categories. First, we can create our network architecture. We take an
input size of 50 nucleotides. The model has one lstm layer with 16 cells
and two dense layers with 8 and 2 neurons.</p>
<div class="sourceCode" id="cb3"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">maxlen</span> <span class="op"><-</span> <span class="fl">50</span></span>
<span><span class="va">model</span> <span class="op"><-</span> <span class="fu"><a href="../reference/create_model_lstm_cnn.html">create_model_lstm_cnn</a></span><span class="op">(</span>maxlen <span class="op">=</span> <span class="va">maxlen</span>,</span>
<span> layer_lstm <span class="op">=</span> <span class="fl">16</span>,</span>
<span> layer_dense <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">8</span>, <span class="fl">2</span><span class="op">)</span><span class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## Model: "model"</span></span>
<span><span class="co">## _________________________________________________________________</span></span>
<span><span class="co">## Layer (type) Output Shape Param # </span></span>
<span><span class="co">## =================================================================</span></span>
<span><span class="co">## input_1 (InputLayer) [(None, 50, 4)] 0 </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## lstm (LSTM) (None, 16) 1344 </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## dense (Dense) (None, 8) 136 </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## dense_1 (Dense) (None, 2) 18 </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## =================================================================</span></span>
<span><span class="co">## Total params: 1498 (5.85 KB)</span></span>
<span><span class="co">## Trainable params: 1498 (5.85 KB)</span></span>
<span><span class="co">## Non-trainable params: 0 (0.00 Byte)</span></span>
<span><span class="co">## _________________________________________________________________</span></span></code></pre>
<p>Next we can train the model using the <code>train_model</code>
function. Function will internally build a data generator for
training.</p>
<div class="sourceCode" id="cb5"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">hist</span> <span class="op"><-</span> <span class="fu"><a href="../reference/train_model.html">train_model</a></span><span class="op">(</span><span class="va">model</span>,</span>
<span> train_type <span class="op">=</span> <span class="st">"label_folder"</span>,</span>
<span> run_name <span class="op">=</span> <span class="st">"gc_model_1"</span>,</span>
<span> path <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="va">train_1_dir</span>, <span class="va">train_2_dir</span><span class="op">)</span>,</span>
<span> path_val <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="va">val_1_dir</span>, <span class="va">val_2_dir</span><span class="op">)</span>,</span>
<span> epochs <span class="op">=</span> <span class="fl">4</span>,</span>
<span> steps_per_epoch <span class="op">=</span> <span class="fl">25</span>, <span class="co"># one epoch = 25 batches</span></span>
<span> batch_size <span class="op">=</span> <span class="fl">64</span>,</span>
<span> step <span class="op">=</span> <span class="fl">50</span>, <span class="co"># take a sample every 50 nt</span></span>
<span> vocabulary_label <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"high_gc"</span>, <span class="st">"equal_dist"</span><span class="op">)</span><span class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## Epoch 1/4</span></span>
<span><span class="co">## 1/25 [>.............................] - ETA: 21s - loss: 0.7058 - acc: 0.5938 4/25 [===>..........................] - ETA: 0s - loss: 0.7028 - acc: 0.5430 7/25 [=======>......................] - ETA: 0s - loss: 0.7013 - acc: 0.533510/25 [===========>..................] - ETA: 0s - loss: 0.6976 - acc: 0.539114/25 [===============>..............] - ETA: 0s - loss: 0.6935 - acc: 0.559217/25 [===================>..........] - ETA: 0s - loss: 0.6900 - acc: 0.577221/25 [========================>.....] - ETA: 0s - loss: 0.6860 - acc: 0.607124/25 [===========================>..] - ETA: 0s - loss: 0.6821 - acc: 0.624325/25 [==============================] - 2s 31ms/step - loss: 0.6813 - acc: 0.6256 - val_loss: 0.6511 - val_acc: 0.7563 - lr: 0.0010</span></span>
<span><span class="co">## Epoch 2/4</span></span>
<span><span class="co">## 1/25 [>.............................] - ETA: 0s - loss: 0.6379 - acc: 0.8281 4/25 [===>..........................] - ETA: 0s - loss: 0.6423 - acc: 0.7617 8/25 [========>.....................] - ETA: 0s - loss: 0.6340 - acc: 0.785212/25 [=============>................] - ETA: 0s - loss: 0.6228 - acc: 0.789116/25 [==================>...........] - ETA: 0s - loss: 0.6086 - acc: 0.805720/25 [=======================>......] - ETA: 0s - loss: 0.5892 - acc: 0.825824/25 [===========================>..] - ETA: 0s - loss: 0.5650 - acc: 0.850925/25 [==============================] - 1s 21ms/step - loss: 0.5590 - acc: 0.8556 - val_loss: 0.3910 - val_acc: 0.9719 - lr: 0.0010</span></span>
<span><span class="co">## Epoch 3/4</span></span>
<span><span class="co">## 1/25 [>.............................] - ETA: 0s - loss: 0.3548 - acc: 1.0000 4/25 [===>..........................] - ETA: 0s - loss: 0.3463 - acc: 0.9883 8/25 [========>.....................] - ETA: 0s - loss: 0.3230 - acc: 0.976611/25 [============>.................] - ETA: 0s - loss: 0.3052 - acc: 0.975915/25 [=================>............] - ETA: 0s - loss: 0.2893 - acc: 0.970817/25 [===================>..........] - ETA: 0s - loss: 0.2792 - acc: 0.970621/25 [========================>.....] - ETA: 0s - loss: 0.2665 - acc: 0.969524/25 [===========================>..] - ETA: 0s - loss: 0.2547 - acc: 0.971425/25 [==============================] - 1s 21ms/step - loss: 0.2533 - acc: 0.9706 - val_loss: 0.1765 - val_acc: 0.9719 - lr: 0.0010</span></span>
<span><span class="co">## Epoch 4/4</span></span>
<span><span class="co">## 1/25 [>.............................] - ETA: 0s - loss: 0.1369 - acc: 1.0000 4/25 [===>..........................] - ETA: 0s - loss: 0.1456 - acc: 0.9922 7/25 [=======>......................] - ETA: 0s - loss: 0.1494 - acc: 0.986610/25 [===========>..................] - ETA: 0s - loss: 0.1425 - acc: 0.987514/25 [===============>..............] - ETA: 0s - loss: 0.1376 - acc: 0.986617/25 [===================>..........] - ETA: 0s - loss: 0.1315 - acc: 0.987121/25 [========================>.....] - ETA: 0s - loss: 0.1259 - acc: 0.986625/25 [==============================] - ETA: 0s - loss: 0.1225 - acc: 0.985025/25 [==============================] - 1s 21ms/step - loss: 0.1225 - acc: 0.9850 - val_loss: 0.0992 - val_acc: 0.9812 - lr: 0.0010</span></span></code></pre>
<pre><code><span><span class="co">## Training done.</span></span></code></pre>
<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">hist</span><span class="op">)</span></span></code></pre></div>
<p><img src="getting_started_files/figure-html/unnamed-chunk-7-1.png" width="700"></p>
</div>
<div class="section level3">
<h3 id="evaluation">Evaluation<a class="anchor" aria-label="anchor" href="#evaluation"></a>
</h3>
<p>We can now evaluate the trained model on all the validation data</p>
<div class="sourceCode" id="cb9"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">eval</span> <span class="op"><-</span> <span class="fu"><a href="../reference/evaluate_model.html">evaluate_model</a></span><span class="op">(</span>path_input <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="va">val_1_dir</span>, <span class="va">val_2_dir</span><span class="op">)</span>,</span>
<span> model <span class="op">=</span> <span class="va">model</span>,</span>
<span> batch_size <span class="op">=</span> <span class="fl">100</span>,</span>
<span> step <span class="op">=</span> <span class="fl">25</span>, <span class="co"># take a sample every 25 nt </span></span>
<span> vocabulary_label <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"high_gc"</span>, <span class="st">"equal_dist"</span><span class="op">)</span><span class="op">)</span>,</span>
<span> mode <span class="op">=</span> <span class="st">"label_folder"</span>,</span>
<span> evaluate_all_files <span class="op">=</span> <span class="cn">TRUE</span>,</span>
<span> verbose <span class="op">=</span> <span class="cn">FALSE</span>,</span>
<span> auc <span class="op">=</span> <span class="cn">TRUE</span>,</span>
<span> auprc <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## Evaluate 399 samples for class high_gc.</span></span>
<span><span class="co">## Evaluate 399 samples for class equal_dist.</span></span></code></pre>
<div class="sourceCode" id="cb11"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">eval</span></span></code></pre></div>
<pre><code><span><span class="co">## [[1]]</span></span>
<span><span class="co">## [[1]]$confusion_matrix</span></span>
<span><span class="co">## Truth</span></span>
<span><span class="co">## Prediction high_gc equal_dist</span></span>
<span><span class="co">## high_gc 383 5</span></span>
<span><span class="co">## equal_dist 16 394</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## [[1]]$accuracy</span></span>
<span><span class="co">## [1] 0.9736842</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## [[1]]$categorical_crossentropy_loss</span></span>
<span><span class="co">## [1] 0.1157783</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## [[1]]$AUC</span></span>
<span><span class="co">## [1] 0.9968593</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## [[1]]$AUPRC</span></span>
<span><span class="co">## [1] 0.9968503</span></span></code></pre>
<p>We can check where our model made mistakes for the sequence with high
GC content.</p>
<div class="sourceCode" id="cb13"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">high_gc_file</span> <span class="op"><-</span> <span class="fu">microseq</span><span class="fu">::</span><span class="fu"><a href="https://rdrr.io/pkg/microseq/man/readFasta.html" class="external-link">readFasta</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.files.html" class="external-link">list.files</a></span><span class="op">(</span><span class="va">val_1_dir</span>, full.names <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span><span class="op">[</span><span class="fl">1</span><span class="op">]</span><span class="op">)</span></span>
<span><span class="va">high_gc_seq</span> <span class="op"><-</span> <span class="va">high_gc_file</span><span class="op">$</span><span class="va">Sequence</span></span>
<span></span>
<span><span class="va">pred_high_gc</span> <span class="op"><-</span> <span class="fu"><a href="../reference/predict_model.html">predict_model</a></span><span class="op">(</span>model <span class="op">=</span> <span class="va">model</span>, </span>
<span> sequence <span class="op">=</span> <span class="va">high_gc_seq</span>,</span>
<span> filename <span class="op">=</span> <span class="cn">NULL</span>, </span>
<span> step <span class="op">=</span> <span class="fl">25</span>,</span>
<span> batch_size <span class="op">=</span> <span class="fl">512</span>,</span>
<span> verbose <span class="op">=</span> <span class="cn">TRUE</span>,</span>
<span> return_states <span class="op">=</span> <span class="cn">TRUE</span>,</span>
<span> mode <span class="op">=</span> <span class="st">"label"</span><span class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## layer_name not specified. Using layer dense_1</span></span></code></pre>
<pre><code><span><span class="co">## Computing output for model at layer dense_1 </span></span>
<span><span class="co">## Model: "model_1"</span></span>
<span><span class="co">## ________________________________________________________________________________</span></span>
<span><span class="co">## Layer (type) Output Shape Param # </span></span>
<span><span class="co">## ================================================================================</span></span>
<span><span class="co">## input_1 (InputLayer) [(None, 50, 4)] 0 </span></span>
<span><span class="co">## lstm (LSTM) (None, 16) 1344 </span></span>
<span><span class="co">## dense (Dense) (None, 8) 136 </span></span>
<span><span class="co">## dense_1 (Dense) (None, 2) 18 </span></span>
<span><span class="co">## ================================================================================</span></span>
<span><span class="co">## Total params: 1498 (5.85 KB)</span></span>
<span><span class="co">## Trainable params: 1498 (5.85 KB)</span></span>
<span><span class="co">## Non-trainable params: 0 (0.00 Byte)</span></span>
<span><span class="co">## ________________________________________________________________________________</span></span></code></pre>
<div class="sourceCode" id="cb16"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">pred_df</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/cbind.html" class="external-link">cbind</a></span><span class="op">(</span><span class="va">pred_high_gc</span><span class="op">$</span><span class="va">states</span>, <span class="va">pred_high_gc</span><span class="op">$</span><span class="va">sample_end_position</span><span class="op">)</span> <span class="op"><a href="../reference/pipe.html">%>%</a></span> </span>
<span> <span class="fu"><a href="https://rdrr.io/r/base/as.data.frame.html" class="external-link">as.data.frame</a></span><span class="op">(</span><span class="op">)</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="va">pred_df</span><span class="op">)</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"high_gc_conf"</span>, <span class="st">"equal_dist_conf"</span>, <span class="st">"sample_end_position"</span><span class="op">)</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/utils/head.html" class="external-link">head</a></span><span class="op">(</span><span class="va">pred_df</span><span class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## high_gc_conf equal_dist_conf sample_end_position</span></span>
<span><span class="co">## 1 0.9330443 0.06695572 50</span></span>
<span><span class="co">## 2 0.9602452 0.03975480 75</span></span>
<span><span class="co">## 3 0.9642879 0.03571207 100</span></span>
<span><span class="co">## 4 0.9596730 0.04032708 125</span></span>
<span><span class="co">## 5 0.9617251 0.03827484 150</span></span>
<span><span class="co">## 6 0.9666333 0.03336672 175</span></span></code></pre>
<div class="sourceCode" id="cb18"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">wrong_pred</span> <span class="op"><-</span> <span class="va">pred_df</span> <span class="op"><a href="../reference/pipe.html">%>%</a></span> <span class="fu">dplyr</span><span class="fu">::</span><span class="fu"><a href="https://dplyr.tidyverse.org/reference/filter.html" class="external-link">filter</a></span><span class="op">(</span><span class="va">high_gc_conf</span> <span class="op"><</span> <span class="fl">0.5</span><span class="op">)</span></span>
<span><span class="va">wrong_pred</span></span></code></pre></div>
<pre><code><span><span class="co">## high_gc_conf equal_dist_conf sample_end_position</span></span>
<span><span class="co">## 1 0.13769490 0.8623052 675</span></span>
<span><span class="co">## 2 0.08829107 0.9117089 800</span></span>
<span><span class="co">## 3 0.15268661 0.8473134 1150</span></span>
<span><span class="co">## 4 0.10348237 0.8965176 1475</span></span>
<span><span class="co">## 5 0.10325063 0.8967494 1950</span></span>
<span><span class="co">## 6 0.08819685 0.9118031 2700</span></span>
<span><span class="co">## 7 0.08648270 0.9135173 3000</span></span>
<span><span class="co">## 8 0.08025692 0.9197431 3700</span></span>
<span><span class="co">## 9 0.10362279 0.8963772 4675</span></span>
<span><span class="co">## 10 0.21332431 0.7866758 7550</span></span>
<span><span class="co">## 11 0.14129026 0.8587097 7875</span></span>
<span><span class="co">## 12 0.37184438 0.6281556 8200</span></span>
<span><span class="co">## 13 0.07818010 0.9218199 8225</span></span>
<span><span class="co">## 14 0.24804193 0.7519581 8425</span></span>
<span><span class="co">## 15 0.30556497 0.6944351 9900</span></span>
<span><span class="co">## 16 0.10370088 0.8962991 9925</span></span></code></pre>
<div class="sourceCode" id="cb20"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="kw">if</span> <span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/nrow.html" class="external-link">nrow</a></span><span class="op">(</span><span class="va">wrong_pred</span><span class="op">)</span> <span class="op">==</span> <span class="fl">0</span><span class="op">)</span> <span class="op">{</span></span>
<span> <span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="st">"All predictions for high GC content class correct"</span><span class="op">)</span></span>
<span><span class="op">}</span> <span class="kw">else</span> <span class="op">{</span></span>
<span> </span>
<span> <span class="co"># extract samples where model was wrong</span></span>
<span> <span class="va">wrong_pred_seq</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/vector.html" class="external-link">vector</a></span><span class="op">(</span><span class="st">"character"</span>, <span class="fu"><a href="https://rdrr.io/r/base/nrow.html" class="external-link">nrow</a></span><span class="op">(</span><span class="va">wrong_pred</span><span class="op">)</span><span class="op">)</span></span>
<span> <span class="kw">for</span> <span class="op">(</span><span class="va">i</span> <span class="kw">in</span> <span class="fl">1</span><span class="op">:</span><span class="fu"><a href="https://rdrr.io/r/base/length.html" class="external-link">length</a></span><span class="op">(</span><span class="va">wrong_pred_seq</span><span class="op">)</span><span class="op">)</span> <span class="op">{</span></span>
<span> <span class="va">sample_end</span> <span class="op"><-</span> <span class="va">wrong_pred</span><span class="op">$</span><span class="va">sample_end_position</span><span class="op">[</span><span class="va">i</span><span class="op">]</span></span>
<span> <span class="va">sample_start</span> <span class="op"><-</span> <span class="va">sample_end</span> <span class="op">-</span> <span class="va">maxlen</span> <span class="op">+</span> <span class="fl">1</span></span>
<span> <span class="va">wrong_pred_seq</span><span class="op">[</span><span class="va">i</span><span class="op">]</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/substr.html" class="external-link">substr</a></span><span class="op">(</span><span class="va">high_gc_seq</span>, <span class="va">sample_start</span>, <span class="va">sample_end</span><span class="op">)</span></span>
<span> <span class="op">}</span></span>
<span> </span>
<span> <span class="va">wrong_pred_seq</span></span>
<span><span class="op">}</span></span></code></pre></div>
<pre><code><span><span class="co">## [1] "CTTAGAGACCTCGCCGCCACCGCCCGAGGTTCCGCTCCGGCGTCCCGCGG"</span></span>
<span><span class="co">## [2] "CCCACTTCGTGTCTATGCCGGACACGCCTCGATAGGCGCAGGCGATGGGC"</span></span>
<span><span class="co">## [3] "ACAGGAGAGACCCTCGGTTGCCGGCGACGCCGTGTCGTTGGTAGGCCCAC"</span></span>
<span><span class="co">## [4] "GATAGCTCCACACCCACCTCAGCGTCCCGGGCCGCCGGCGTTCCGCCTGC"</span></span>
<span><span class="co">## [5] "GCCCAACAAGGACGGTGAACTCCCCCGGGTACGGAAGAGGGTATGGCCGC"</span></span>
<span><span class="co">## [6] "AGGAGTCCTCCTAGAGCTCATGGGTTGAGACGTGCCTCGACGCCCGACCT"</span></span>
<span><span class="co">## [7] "CCCATTAGACCGTCCTGGCGGACACCCGTACGGGTGAGACCCTCCGGGTC"</span></span>
<span><span class="co">## [8] "TGCTTATCATGGCCGCCCTGATGACGTGTCAGGGGGAGGACTGAGCGGGG"</span></span>
<span><span class="co">## [9] "ATCCCGCATTCGCCGACGTCTCCACAGGAGGATCAGCGGGTCCGGGGCGA"</span></span>
<span><span class="co">## [10] "TTTGCGCCCCCTAAGGCACAGCCGCGACCCCAGGTTGGGAACCGCCGAAC"</span></span>
<span><span class="co">## [11] "CTACGGAACGTGGCTCCGAGCATCGGCGCATCGGCATGTGTCTGCCGGCG"</span></span>
<span><span class="co">## [12] "GTCGGGCGGAGCGCCACCACCGAGGGGCGGGCCCTTCAATTCTATAAGCG"</span></span>
<span><span class="co">## [13] "GGCGGGCCCTTCAATTCTATAAGCGACGCCGCCCTTGTCTGACGCTGGGC"</span></span>
<span><span class="co">## [14] "CACCCTATGTAGCCCCCTGCCTCGCCGGCCAGCCTGGGCTGATCGGGGCC"</span></span>
<span><span class="co">## [15] "TGGCCGTCGCGCTCCGGAGCCGTCACACCGGCGTACCTGTTATAAAGTCG"</span></span>
<span><span class="co">## [16] "CACCGGCGTACCTGTTATAAAGTCGCCCGCGCTCCCCCGGGCGCACCACG"</span></span></code></pre>
<p>We can check the nucleotide distribution of those sequences</p>
<div class="sourceCode" id="cb22"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">l</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="op">)</span></span>
<span><span class="kw">for</span> <span class="op">(</span><span class="va">i</span> <span class="kw">in</span> <span class="fl">1</span><span class="op">:</span><span class="fu"><a href="https://rdrr.io/r/base/length.html" class="external-link">length</a></span><span class="op">(</span><span class="va">wrong_pred_seq</span><span class="op">)</span><span class="op">)</span> <span class="op">{</span></span>
<span> <span class="va">l</span><span class="op">[[</span><span class="va">i</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="fu">stringr</span><span class="fu">::</span><span class="fu"><a href="https://stringr.tidyverse.org/reference/str_split.html" class="external-link">str_split</a></span><span class="op">(</span><span class="va">wrong_pred_seq</span><span class="op">[</span><span class="va">i</span><span class="op">]</span>, <span class="st">""</span><span class="op">)</span> <span class="op"><a href="../reference/pipe.html">%>%</a></span> <span class="fu"><a href="https://rdrr.io/r/base/table.html" class="external-link">table</a></span><span class="op">(</span><span class="op">)</span> <span class="op"><a href="../reference/pipe.html">%>%</a></span> <span class="fu"><a href="https://rdrr.io/r/base/proportions.html" class="external-link">prop.table</a></span><span class="op">(</span><span class="op">)</span> <span class="op"><a href="../reference/pipe.html">%>%</a></span> <span class="fu"><a href="https://rdrr.io/r/base/t.html" class="external-link">t</a></span><span class="op">(</span><span class="op">)</span> <span class="op"><a href="../reference/pipe.html">%>%</a></span> <span class="fu"><a href="https://rdrr.io/r/base/matrix.html" class="external-link">as.matrix</a></span><span class="op">(</span><span class="op">)</span></span>
<span><span class="op">}</span></span>
<span><span class="va">dist_matrix</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/do.call.html" class="external-link">do.call</a></span><span class="op">(</span><span class="va">rbind</span>, <span class="va">l</span><span class="op">)</span></span>
<span><span class="va">dist_matrix</span></span></code></pre></div>
<pre><code><span><span class="co">## A C G T</span></span>
<span><span class="co">## [1,] 0.10 0.46 0.30 0.14</span></span>
<span><span class="co">## [2,] 0.16 0.34 0.32 0.18</span></span>
<span><span class="co">## [3,] 0.16 0.32 0.36 0.16</span></span>
<span><span class="co">## [4,] 0.12 0.48 0.26 0.14</span></span>
<span><span class="co">## [5,] 0.24 0.30 0.36 0.10</span></span>
<span><span class="co">## [6,] 0.18 0.32 0.30 0.20</span></span>
<span><span class="co">## [7,] 0.16 0.38 0.30 0.16</span></span>
<span><span class="co">## [8,] 0.16 0.22 0.42 0.20</span></span>
<span><span class="co">## [9,] 0.18 0.34 0.34 0.14</span></span>
<span><span class="co">## [10,] 0.20 0.40 0.28 0.12</span></span>
<span><span class="co">## [11,] 0.14 0.32 0.36 0.18</span></span>
<span><span class="co">## [12,] 0.18 0.32 0.36 0.14</span></span>
<span><span class="co">## [13,] 0.14 0.34 0.30 0.22</span></span>
<span><span class="co">## [14,] 0.10 0.44 0.30 0.16</span></span>
<span><span class="co">## [15,] 0.16 0.34 0.30 0.20</span></span>
<span><span class="co">## [16,] 0.16 0.44 0.26 0.14</span></span></code></pre>
<div class="sourceCode" id="cb24"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">df</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span>distribution <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/vector.html" class="external-link">as.vector</a></span><span class="op">(</span><span class="va">dist_matrix</span><span class="op">)</span>,</span>
<span> nt <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/factor.html" class="external-link">factor</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/rep.html" class="external-link">rep</a></span><span class="op">(</span><span class="va">vocabulary</span>, each <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/nrow.html" class="external-link">nrow</a></span><span class="op">(</span><span class="va">dist_matrix</span><span class="op">)</span><span class="op">)</span><span class="op">)</span>,</span>
<span> sample_id <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/rep.html" class="external-link">rep</a></span><span class="op">(</span><span class="fl">1</span><span class="op">:</span><span class="fu"><a href="https://rdrr.io/r/base/nrow.html" class="external-link">nrow</a></span><span class="op">(</span><span class="va">dist_matrix</span><span class="op">)</span>, <span class="fl">4</span><span class="op">)</span><span class="op">)</span></span>
<span></span>
<span><span class="fu">ggplot</span><span class="op">(</span><span class="va">df</span>, <span class="fu">aes</span><span class="op">(</span>fill<span class="op">=</span><span class="va">nt</span>, y<span class="op">=</span><span class="va">distribution</span>, x<span class="op">=</span><span class="va">nt</span><span class="op">)</span><span class="op">)</span> <span class="op">+</span> </span>
<span> <span class="fu">geom_bar</span><span class="op">(</span>position<span class="op">=</span><span class="st">"dodge"</span>, stat<span class="op">=</span><span class="st">"identity"</span><span class="op">)</span> <span class="op">+</span> <span class="fu">facet_wrap</span><span class="op">(</span><span class="op">~</span><span class="va">sample_id</span><span class="op">)</span></span></code></pre></div>
<p><img src="getting_started_files/figure-html/unnamed-chunk-10-1.png" width="700"></p>
<p>Finally, we may want to aggregate all predictions, we made for the
sequence. We can do this using the <code>summarize_states</code>
function. The function returns the mean confidence, the maximum
prediction and the vote percentages (percentage of predictions per
class).</p>
<div class="sourceCode" id="cb25"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">label_names</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"high_gc"</span>, <span class="st">"equal_dist"</span><span class="op">)</span></span>
<span><span class="va">pred_summary</span> <span class="op"><-</span> <span class="fu"><a href="../reference/summarize_states.html">summarize_states</a></span><span class="op">(</span>label_names <span class="op">=</span> <span class="va">label_names</span>, df <span class="op">=</span> <span class="va">pred_df</span><span class="op">[</span>, <span class="fl">1</span><span class="op">:</span><span class="fl">2</span><span class="op">]</span><span class="op">)</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">pred_summary</span><span class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## file_name mean_conf_high_gc mean_conf_equal_dist max_conf_high_gc</span></span>
<span><span class="co">## <lgcl> <num> <num> <num></span></span>
<span><span class="co">## 1: NA 0.9148641 0.08513589 0.9714182</span></span>
<span><span class="co">## max_conf_equal_dist vote_perc_high_gc vote_perc_equal_dist mean_prediction</span></span>
<span><span class="co">## <num> <num> <num> <char></span></span>
<span><span class="co">## 1: 0.9218199 0.9598997 0.04010025 high_gc</span></span>
<span><span class="co">## max_prediction vote_prediction num_prediction</span></span>
<span><span class="co">## <char> <char> <int></span></span>
<span><span class="co">## 1: high_gc high_gc 399</span></span></code></pre>
</div>
</div>
</main><aside class="col-md-3"><nav id="toc"><h2>On this page</h2>
</nav></aside>
</div>
<footer><div class="pkgdown-footer-left">
<p>Developed by Philipp Münch, René Mreches, Martin Binder, Hüseyin Anil Gündüz, Xiao-Yin To, Alice McHardy.</p>
</div>
<div class="pkgdown-footer-right">
<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.9.</p>
</div>
</footer>
</div>
</body>
</html>