[02ea2d]: / R / train.R

Download this file

858 lines (764 with data), 41.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
#' @title Train neural network on genomic data
#'
#' @description
#' Train a neural network on genomic data. Data can be fasta/fastq files, rds files or a prepared data set.
#' If the data is given as collection of fasta, fastq or rds files, function will create a data generator that extracts training and validation batches
#' from files. Function includes several options to determine the sampling strategy of the generator and preprocessing of the data.
#' Training progress can be visualized in tensorboard. Model weights can be stored during training using checkpoints.
#'
#' @inheritParams generator_fasta_lm
#' @inheritParams generator_fasta_label_folder
#' @inheritParams generator_fasta_label_header_csv
#' @inheritParams get_generator
#' @param train_type Either `"lm"`, `"lm_rds"`, `"masked_lm"` for language model; `"label_header"`, `"label_folder"`, `"label_csv"`, `"label_rds"` for classification or `"dummy_gen"`.
#' \itemize{
#' \item Language model is trained to predict character(s) in a sequence. \cr
#' \item `"label_header"`/`"label_folder"`/`"label_csv"` are trained to predict a corresponding class given a sequence as input.
#' \item If `"label_header"`, class will be read from fasta headers.
#' \item If `"label_folder"`, class will be read from folder, i.e. all files in one folder must belong to the same class.
#' \item If `"label_csv"`, targets are read from a csv file. This file should have one column named "file". The targets then correspond to entries in that row (except "file"
#' column). Example: if we are currently working with a file called "a.fasta" and corresponding label is "label_1", there should be a row in our csv file
#'
#' | file | label_1 | label_2 |
#' | --- | --- | --- |
#' | "a.fasta" | 1 | 0 |
#'
#' \item If `"label_rds"`, generator will iterate over set of .rds files containing each a list of input and target tensors. Not implemented for model
#' with multiple inputs.
#' \item If `"lm_rds"`, generator will iterate over set of .rds files and will split tensor according to `target_len` argument
#' (targets are last `target_len` nucleotides of each sequence).
#' \item If `"dummy_gen"`, generator creates random data once and repeatedly feeds these to model.
#' \item If `"masked_lm"`, generator maskes some parts of the input. See `masked_lm` argument for details.
#' }
#' @param model A keras model.
#' @param path Path to training data. If \code{train_type} is \code{label_folder}, should be a vector or list
#' where each entry corresponds to a class (list elements can be directories and/or individual files). If \code{train_type} is not \code{label_folder},
#' can be a single directory or file or a list of directories and/or files.
#' @param path_val Path to validation data. See `path` argument for details.
#' @param dataset List of training data holding training samples in RAM instead of using generator. Should be list with two entries called `"X"` and `"Y"`.
#' @param dataset_val List of validation data. Should have two entries called `"X"` and `"Y"`.
#' @param path_checkpoint Path to checkpoints folder or `NULL`. If `NULL`, checkpoints don't get stored.
#' @param path_log Path to directory to write training scores. File name is `run_name` + `".csv"`. No output if `NULL`.
#' @param train_val_ratio For generator defines the fraction of batches that will be used for validation (compared to size of training data), i.e. one validation iteration
#' processes \code{batch_size} \eqn{*} \code{steps_per_epoch} \eqn{*} \code{train_val_ratio} samples. If you use dataset instead of generator and \code{dataset_val} is `NULL`, splits \code{dataset}
#' into train/validation data.
#' @param run_name Name of the run. Name will be used to identify output from callbacks. If `NULL`, will use date as run name.
#' If name already present, will add `"_2"` to name or `"_{x+1}"` if name ends with `_x`, where `x` is some integer.
#' @param batch_size Number of samples used for one network update.
#' @param epochs Number of iterations.
#' @param max_queue_size Maximum size for the generator queue.
#' @param reduce_lr_on_plateau Whether to use learning rate scheduler.
#' @param lr_plateau_factor Factor of decreasing learning rate when plateau is reached.
#' @param patience Number of epochs waiting for decrease in validation loss before reducing learning rate.
#' @param cooldown Number of epochs without changing learning rate.
#' @param steps_per_epoch Number of training batches per epoch.
#' @param step Frequency of sampling steps.
#' @param shuffle_file_order Boolean, whether to go through files sequentially or shuffle beforehand.
#' @param vocabulary Vector of allowed characters. Characters outside vocabulary get encoded as specified in \code{ambiguous_nuc}.
#' @param initial_epoch Epoch at which to start training. Note that network
#' will run for (\code{epochs} - \code{initial_epochs}) rounds and not \code{epochs} rounds.
#' @param path_tensorboard Path to tensorboard directory or `NULL`. If `NULL`, training not tracked on tensorboard.
#' @param save_best_only Only save model that improved on some score. Not applied if argument is `NULL`. Otherwise must be
#' list with argument `monitor` or `save_freq` (can only use one option). `moniter` specifies what metric to use.
#' `save_freq`, integer specifying how often to store a checkpoint (in epochs).
#' @param save_weights_only Whether to save weights only.
#' @param seed Sets seed for reproducible results.
#' @param shuffle_input Whether to shuffle entries in file.
#' @param tb_images Whether to show custom images (confusion matrix) in tensorboard "IMAGES" tab.
#' @param format File format, `"fasta"`, `"fastq"`, `"rds"` or `"fasta.tar.gz"`, `"fastq.tar.gz"` for `tar.gz` files.
#' @param path_file_log Write name of files used for training to csv file if path is specified.
#' @param vocabulary_label Character vector of possible targets. Targets outside \code{vocabulary_label} will get discarded if
#' \code{train_type = "label_header"}.
#' @param file_limit Integer or `NULL`. If integer, use only specified number of randomly sampled files for training. Ignored if greater than number of files in \code{path}.
#' @param reverse_complement_encoding Whether to use both original sequence and reverse complement as two input sequences.
#' @param output_format Determines shape of output tensor for language model.
#' Either `"target_right"`, `"target_middle_lstm"`, `"target_middle_cnn"` or `"wavenet"`.
#' Assume a sequence `"AACCGTA"`. Output correspond as follows
#' \itemize{
#' \item `"target_right": X = "AACCGT", Y = "A"`
#' \item `"target_middle_lstm": X = (X_1 = "AAC", X_2 = "ATG"), Y = "C"` (note reversed order of X_2)
#' \item `"target_middle_cnn": X = "AACGTA", Y = "C"`
#' \item `"wavenet": X = "AACCGT", Y = "ACCGTA"`
#' }
#' @param reset_states Whether to reset hidden states of RNN layer at every new input file and before/after validation.
#' @param use_quality_score Whether to use fastq quality scores. If `TRUE` input is not one-hot-encoding but corresponds to probabilities.
#' For example (0.97, 0.01, 0.01, 0.01) instead of (1, 0, 0, 0).
#' @param padding Whether to pad sequences too short for one sample with zeros.
#' @param early_stopping_time Time in seconds after which to stop training.
#' @param validation_only_after_training Whether to skip validation during training and only do one validation iteration after training.
#' @param skip_amb_nuc Threshold of ambiguous nucleotides to accept in fasta entry. Complete entry will get discarded otherwise.
#' @param class_weight List of weights for output. Order should correspond to \code{vocabulary_label}.
#' You can use \code{\link{get_class_weight}} function to estimate class weights:
#'
#' \code{class_weights <- get_class_weights(path = path, train_type = train_type)}
#'
#' If \code{train_type = "label_csv"} you need to add path to csv file:
#'
#' \code{class_weights <- get_class_weights(path = path, train_type = train_type, csv_path = target_from_csv)}
#' @param print_scores Whether to print train/validation scores during training.
#' @param train_val_split_csv A csv file specifying train/validation split. csv file should contain one column named `"file"` and one column named
#' `"type"`. The `"file"` column contains names of fasta/fastq files and `"type"` column specifies if file is used for training or validation.
#' Entries in `"type"` must be named `"train"` or `"val"`, otherwise file will not be used for either. `path` and `path_val` arguments should be the same.
#' Not implemented for `train_type = "label_folder"`.
#' @param set_learning When you want to assign one label to set of samples. Only implemented for `train_type = "label_folder"`.
#' Input is a list with the following parameters
#' \itemize{
#' \item `samples_per_target`: how many samples to use for one target.
#' \item `maxlen`: length of one sample.
#' \item `reshape_mode`: `"time_dist", "multi_input"` or `"concat"`.
#' \itemize{
#' \item
#' If `reshape_mode` is `"multi_input"`, generator will produce `samples_per_target` separate inputs, each of length `maxlen` (model should have
#' `samples_per_target` input layers).
#' \item If reshape_mode is `"time_dist"`, generator will produce a 4D input array. The dimensions correspond to
#' `(batch_size, samples_per_target, maxlen, length(vocabulary))`.
#' \item If `reshape_mode` is `"concat"`, generator will concatenate `samples_per_target` sequences
#' of length `maxlen` to one long sequence.
#' }
#' \item If `reshape_mode` is `"concat"`, there is an additional `buffer_len`
#' argument. If `buffer_len` is an integer, the subsequences are interspaced with `buffer_len` rows. The input length is
#' (`maxlen` \eqn{*} `samples_per_target`) + `buffer_len` \eqn{*} (`samples_per_target` - 1).
#' }
#' @param random_sampling Whether samples should be taken from random positions when using `max_samples` argument. If `FALSE` random
#' samples are taken from a consecutive subsequence.
#' @param n_gram_stride Step size for n-gram encoding. For AACCGGTT with `n_gram = 4` and `n_gram_stride = 2`, generator encodes
#' `(AACC), (CCGG), (GGTT)`; for `n_gram_stride = 4` generator encodes `(AACC), (GGTT)`.
#' @param callback_list Add additional callbacks to `keras::fit` call.
#' @param model_card List of arguments for training parameters of training run. Must contain at least an entry `path_model_card`, i.e. the
#' directory where parameters are stored. List can contain additional (optional) arguments, for example
#' `model_card = list(path_model_card = "/path/to/logs", description = "transfer learning with BERT model on virus data", ...)`
#' @param return_gen Whether to return the train and validation generators (instead of training).
#' @examplesIf reticulate::py_module_available("tensorflow")
#' # create dummy data
#' path_train_1 <- tempfile()
#' path_train_2 <- tempfile()
#' path_val_1 <- tempfile()
#' path_val_2 <- tempfile()
#'
#' for (current_path in c(path_train_1, path_train_2,
#' path_val_1, path_val_2)) {
#' dir.create(current_path)
#' create_dummy_data(file_path = current_path,
#' num_files = 3,
#' seq_length = 10,
#' num_seq = 5,
#' vocabulary = c("a", "c", "g", "t"))
#' }
#'
#' # create model
#' model <- create_model_lstm_cnn(layer_lstm = 8, layer_dense = 2, maxlen = 5)
#'
#' # train model
#' hist <- train_model(train_type = "label_folder",
#' model = model,
#' path = c(path_train_1, path_train_2),
#' path_val = c(path_val_1, path_val_2),
#' batch_size = 8,
#' epochs = 3,
#' steps_per_epoch = 6,
#' step = 5,
#' format = "fasta",
#' vocabulary_label = c("label_1", "label_2"))
#'
#' @returns A list of training metrics.
#' @export
train_model <- function(model = NULL,
dataset = NULL,
dataset_val = NULL,
# training args
train_val_ratio = 0.2,
run_name = "run_1",
initial_epoch = 0,
class_weight = NULL,
print_scores = TRUE,
epochs = 10,
max_queue_size = 100,
steps_per_epoch = 1000,
# callbacks
path_checkpoint = NULL,
path_tensorboard = NULL,
path_log = NULL,
save_best_only = NULL,
save_weights_only = FALSE,
tb_images = FALSE,
path_file_log = NULL,
reset_states = FALSE,
early_stopping_time = NULL,
validation_only_after_training = FALSE,
train_val_split_csv = NULL,
reduce_lr_on_plateau = TRUE,
lr_plateau_factor = 0.9,
patience = 20,
cooldown = 1,
model_card = NULL,
callback_list = NULL,
# generator args
train_type = "label_folder",
path = NULL,
path_val = NULL,
batch_size = 64,
step = NULL,
shuffle_file_order = TRUE,
vocabulary = c("a", "c", "g", "t"),
format = "fasta",
ambiguous_nuc = "zero",
seed = c(1234, 4321),
file_limit = NULL,
use_coverage = NULL,
set_learning = NULL,
proportion_entries = NULL,
sample_by_file_size = FALSE,
n_gram = NULL,
n_gram_stride = 1,
masked_lm = NULL,
random_sampling = FALSE,
add_noise = NULL,
return_int = FALSE,
maxlen = NULL,
reverse_complement = FALSE,
reverse_complement_encoding = FALSE,
output_format = "target_right",
proportion_per_seq = NULL,
read_data = FALSE,
use_quality_score = FALSE,
padding = FALSE,
concat_seq = NULL,
target_len = 1,
skip_amb_nuc = NULL,
max_samples = NULL,
added_label_path = NULL,
add_input_as_seq = NULL,
target_from_csv = NULL,
target_split = NULL,
shuffle_input = TRUE,
vocabulary_label = NULL,
delete_used_files = FALSE,
reshape_xy = NULL,
return_gen = FALSE) {
if (!is.null(model_card)) {
if (!is.list(model_card)) {
stop("model_card must be a list and contain at least an entry called 'path_model_card'")
}
}
# initialize metrics, temporary fix
model <- manage_metrics(model)
run_name <- get_run_name(run_name, path_tensorboard, path_checkpoint, path_log,
path_model_card = model_card$path_model_card,
auto_extend = TRUE)
train_with_gen <- is.null(dataset)
output <- list(tensorboard = FALSE, checkpoints = FALSE)
if (!is.null(path_tensorboard)) output$tensorboard <- TRUE
if (!is.null(path_checkpoint)) output$checkpoints <- TRUE
wavenet_format <- FALSE ; target_middle <- FALSE ; cnn_format <- FALSE
if (train_type != "label_csv") target_from_csv <- NULL
if (train_with_gen) {
stopifnot(train_type %in% c("lm", "label_header", "label_folder", "label_csv", "label_rds", "lm_rds", "dummy_gen", "masked_lm"))
stopifnot(ambiguous_nuc %in% c("zero", "equal", "discard", "empirical"))
stopifnot(length(vocabulary) == length(unique(vocabulary)))
stopifnot(length(vocabulary_label) == length(unique(vocabulary_label)))
labelByFolder <- FALSE
labelGen <- ifelse(train_type == "lm", FALSE, TRUE)
if (train_type == "label_header") target_from_csv <- NULL
if (train_type == "label_csv") {
#train_type <- "label_header"
if (is.null(target_from_csv)) {
stop('You need to add a path to csv file for target_from_csv when using train_type = "label_csv"')
}
if (!is.null(vocabulary_label)) {
message("Reading vocabulary_label from csv header")
if (!is.data.frame(target_from_csv)) {
output_label_csv <- utils::read.csv2(target_from_csv, header = TRUE, stringsAsFactors = FALSE)
if (dim(output_label_csv)[2] == 1) {
output_label_csv <- utils::read.csv(target_from_csv, header = TRUE, stringsAsFactors = FALSE)
}
} else {
output_label_csv <- target_from_csv
}
vocabulary_label <- names(output_label_csv)
vocabulary_label <- vocabulary_label[vocabulary_label != "file"]
}
}
if (!is.null(skip_amb_nuc)) {
if((skip_amb_nuc > 1) | (skip_amb_nuc <0)) {
stop("skip_amb_nuc should be between 0 and 1 or NULL")
}
}
if (!is.null(proportion_per_seq)) {
if(any(proportion_per_seq > 1) | any(proportion_per_seq < 0)) {
stop("proportion_per_seq should be between 0 and 1 or NULL")
}
}
# TODO: adjust for multi output model
# if (!is.null(class_weight) && (length(class_weight) != length(vocabulary_label))) {
# stop("class_weight and vocabulary_label must have same length")
# }
if (!is.null(concat_seq)) {
if (!is.null(use_coverage)) stop("Coverage encoding not implemented for concat_seq")
}
# train train_val_ratio via csv file
if (!is.null(train_val_split_csv)) {
train_val_file <- utils::read.csv2(train_val_split_csv, header = TRUE, stringsAsFactors = FALSE)
if (is.null(path)) {
path <- train_val_file %>% dplyr::filter(type %in% c("train", "val", "validation")) %>%
dplyr::select(file) %>% as.list()
}
if (train_type == "label_folder") {
stop('train_val_split_csv not implemented for train_type = "label_folder"')
}
if (is.null(path_val)) {
path_val <- path
} else {
if (!all(unlist(path_val) %in% unlist(path))) {
warning("Train/validation split done via file in train_val_split_csv. Only using files from path argument.")
}
path_val <- path
}
if (dim(train_val_file)[2] == 1) {
train_val_file <- utils::read.csv(train_val_split_csv, header = TRUE, stringsAsFactors = FALSE)
}
train_val_file <- dplyr::distinct(train_val_file)
if (!all(c("file", "type") %in% names(train_val_file))) {
stop("Column names of train_val_split_csv file must be 'file' and 'type'")
}
if (length(train_val_file$file) != length(unique(train_val_file$file))) {
stop("In train_val_split_csv all entires in 'file' column must be unique")
}
train_files <- train_val_file %>% dplyr::filter(type == "train")
train_files <- as.character(train_files$file)
val_files <- train_val_file %>% dplyr::filter(type == "val" | type == "validation")
val_files <- as.character(val_files$file)
} else {
train_files <- NULL
val_files <- NULL
}
if (train_type == "lm") {
stopifnot(output_format %in% c("target_right", "target_middle_lstm", "target_middle_cnn", "wavenet"))
if (output_format == "target_middle_lstm") target_middle <- TRUE
if (output_format == "target_middle_cnn") cnn_format <- TRUE
if (output_format == "wavenet") wavenet_format <- TRUE
}
if (train_type == "label_header" & is.null(target_from_csv)) {
stopifnot(!is.null(vocabulary_label))
}
if (train_type == "label_folder") {
labelByFolder <- TRUE
stopifnot(!is.null(vocabulary_label))
stopifnot(length(path) == length(vocabulary_label))
}
}
model_weights <- model$get_weights()
# function arguments
argumentList <- as.list(match.call(expand.dots=FALSE))
#argumentList <- c(as.list(environment()), list(...)) log default args too
argumentList <- argumentList[names(argumentList) != ""]
argumentList <- lapply(argumentList, eval, envir = parent.frame())
# extract maxlen from model
if (is.null(maxlen)) {
maxlen <- get_maxlen(model, set_learning, target_middle, read_data)
}
if (is.null(step)) step <- maxlen
vocabulary_label_size <- length(vocabulary_label)
vocabulary_size <- length(vocabulary)
if (is.null(dataset) && labelByFolder) {
if (length(path) == 1) warning("Training with just one label")
}
# add empty hparam dict if non exists
if (!reticulate::py_has_attr(model, "hparam")) {
model$hparam <- reticulate::dict()
}
# tempory file to log training data
removeLog <- FALSE
if (is.null(path_file_log)) {
removeLog <- TRUE
path_file_log <- tempfile(pattern = "", fileext = ".csv")
} else {
if (!endsWith(path_file_log, ".csv")) path_file_log <- paste0(path_file_log, ".csv")
#path_file_logVal <- tempfile(pattern = "", fileext = ".csv")
}
if (reset_states) {
path_file_logVal <- tempfile(pattern = "", fileext = ".csv")
} else {
path_file_logVal <- NULL
}
# if no dataset is supplied, external fasta generator will generate batches
if (train_with_gen) {
#message("Starting fasta generator...")
gen <- get_generator(path = path, batch_size = batch_size, model = model,
maxlen = maxlen, step = step, shuffle_file_order = shuffle_file_order,
vocabulary = vocabulary, seed = seed[1], proportion_entries = proportion_entries,
shuffle_input = shuffle_input, format = format, reshape_xy = reshape_xy,
path_file_log = path_file_log, reverse_complement = reverse_complement, n_gram_stride = n_gram_stride,
output_format = output_format, ambiguous_nuc = ambiguous_nuc,
proportion_per_seq = proportion_per_seq, skip_amb_nuc = skip_amb_nuc,
use_quality_score = use_quality_score, padding = padding, n_gram = n_gram,
added_label_path = added_label_path, add_input_as_seq = add_input_as_seq,
max_samples = max_samples, concat_seq = concat_seq, target_len = target_len,
file_filter = train_files, use_coverage = use_coverage, random_sampling = random_sampling,
train_type = train_type, set_learning = set_learning, file_limit = file_limit,
reverse_complement_encoding = reverse_complement_encoding, read_data = read_data,
sample_by_file_size = sample_by_file_size, add_noise = add_noise, target_split = target_split,
target_from_csv = target_from_csv, masked_lm = masked_lm, return_int = return_int,
path_file_logVal = path_file_logVal, delete_used_files = delete_used_files,
vocabulary_label = vocabulary_label, val = FALSE)
if (!is.null(path_val)) {
gen.val <- get_generator(path = path_val, batch_size = batch_size, model = model,
maxlen = maxlen, step = step, shuffle_file_order = shuffle_file_order,
vocabulary = vocabulary, seed = seed[2], proportion_entries = proportion_entries,
shuffle_input = shuffle_input, format = format, delete_used_files = FALSE,
path_file_log = path_file_logVal, reverse_complement = reverse_complement, n_gram_stride = n_gram_stride,
output_format = output_format, ambiguous_nuc = ambiguous_nuc, reshape_xy = reshape_xy,
proportion_per_seq = proportion_per_seq, skip_amb_nuc = skip_amb_nuc,
use_quality_score = use_quality_score, padding = padding, n_gram = n_gram,
added_label_path = added_label_path, add_input_as_seq = add_input_as_seq,
max_samples = max_samples, concat_seq = concat_seq, target_len = target_len,
file_filter = val_files, use_coverage = use_coverage, random_sampling = random_sampling,
train_type = train_type, set_learning = set_learning, file_limit = file_limit,
reverse_complement_encoding = reverse_complement_encoding, read_data = read_data,
sample_by_file_size = sample_by_file_size, add_noise = add_noise, target_split = target_split,
target_from_csv = target_from_csv, masked_lm = masked_lm, return_int = return_int,
path_file_logVal = path_file_logVal, vocabulary_label = vocabulary_label,
val = TRUE)
} else {
gen.val <- NULL
}
}
# skip validation callback
if (validation_only_after_training | is.null(train_val_ratio) || train_val_ratio == 0) {
validation_data <- NULL
} else {
if (train_with_gen) {
if (is.null(path_val)) {
validation_data <- NULL
} else {
validation_data <- gen.val
}
} else {
validation_data <- dataset_val
}
}
if (is.null(validation_data)) {
validation_steps <- NULL
} else {
validation_steps <- ceiling(steps_per_epoch * train_val_ratio)
}
callbacks <- get_callbacks(default_arguments = NULL, model = model, path_tensorboard = path_tensorboard, run_name = run_name, train_type = train_type,
path = path, train_val_ratio = train_val_ratio, batch_size = batch_size, epochs = epochs,
max_queue_size = max_queue_size, lr_plateau_factor = lr_plateau_factor, patience = patience, cooldown = cooldown, format = format,
steps_per_epoch = steps_per_epoch, step = step, shuffle_file_order = shuffle_file_order, initial_epoch = initial_epoch, vocabulary = vocabulary,
learning_rate = model$optimizer$learning_rate$numpy(), solver = stringr::str_to_lower(model$optimizer$get_config()["name"]),
shuffle_input = shuffle_input, vocabulary_label = vocabulary_label,
file_limit = file_limit, reverse_complement = reverse_complement, wavenet_format = wavenet_format, cnn_format = cnn_format,
train_val_split_csv = train_val_split_csv, n_gram = n_gram, path_file_logVal = path_file_logVal, validation_steps = validation_steps,
create_model_function = NULL, vocabulary_size = vocabulary_size, gen_cb = NULL, argumentList = argumentList, output = output,
maxlen = maxlen, labelGen = labelGen, labelByFolder = labelByFolder, vocabulary_label_size = vocabulary_label_size, tb_images = tb_images,
target_middle = target_middle, path_file_log = path_file_log, proportion_per_seq = proportion_per_seq,
skip_amb_nuc = skip_amb_nuc, max_samples = max_samples, proportion_entries = proportion_entries, path_log = path_log,
train_with_gen = train_with_gen, random_sampling = random_sampling, reduce_lr_on_plateau = reduce_lr_on_plateau,
save_weights_only = save_weights_only, path_checkpoint = path_checkpoint, save_best_only = save_best_only, gen.val = gen.val,
target_from_csv = target_from_csv, reset_states = reset_states, early_stopping_time = early_stopping_time,
validation_only_after_training = validation_only_after_training, model_card = model_card, dataset_val = dataset_val)
# training
if (train_with_gen) {
if (!is.null(dataset_val)) {
validation_data <- dataset_val
validation_steps <- NULL
}
if (return_gen) {
return(list(gen = gen, gen.val = gen.val))
}
model <- keras::set_weights(model, model_weights)
history <-
model %>% keras::fit(
x = gen,
validation_data = validation_data,
validation_steps = validation_steps,
steps_per_epoch = steps_per_epoch,
max_queue_size = max_queue_size,
epochs = epochs,
initial_epoch = initial_epoch,
callbacks = c(callbacks, callback_list),
class_weight = class_weight,
batch_size = batch_size,
verbose = print_scores)
if (validation_only_after_training) {
history$val_loss <- model$val_loss
history$val_acc <- model$val_acc
model$val_loss <- NULL
model$val_acc <- NULL
}
} else {
model <- keras::set_weights(model, model_weights)
if (!is.null(dataset_val)) {
validation_data <- list(dataset_val[[1]], dataset_val[[2]])
} else {
validation_data <- NULL
}
history <- keras::fit(
object = model,
x = dataset[[1]],
y = dataset[[2]],
batch_size = batch_size,
validation_split = train_val_ratio,
validation_data = validation_data,
callbacks = c(callbacks, callback_list),
epochs = epochs,
class_weight = class_weight,
verbose = print_scores)
}
if (removeLog & file.exists(path_file_log)) {
file.remove(path_file_log)
}
message("Training done.")
return(history)
}
#' Generate run_name if none is given or is already present.
#'
#' If no run name is given, will use date as run name. If run name is already present will add _2 to name or
#' _x+1 if name ends with _x and x is integer.
#'
#' @param auto_extend If run_name is already present, add "_2" to name. If name already ends with "_x" replace x with x+1.
#' @noRd
get_run_name <- function(run_name = NULL, path_tensorboard, path_checkpoint, path_log, path_model_card, auto_extend = FALSE) {
if (is.null(run_name)) {
run_name_new <- as.character(Sys.time()) %>% stringr::str_replace_all(" ", "_")
}
tb_names <- ""
cp_names <- ""
log_names <- ""
mc_names <- ""
name_present_tb <- FALSE
name_present_cp <- FALSE
name_present_log <- FALSE
name_present_mc <- FALSE
if (!is.null(path_tensorboard)) {
tb_names <- list.files(path_tensorboard)
name_present_tb <- (run_name %in% tb_names) # & any(stringr::str_detect(tb_names, run_name))
}
if (!is.null(path_checkpoint)) {
cp_names <- list.files(path_checkpoint)
name_present_cp <- (run_name %in% cp_names) # & any(stringr::str_detect(cp_names, run_name))
}
if (!is.null(path_log)) {
log_names <- list.files(path_log)
name_present_log <- (run_name %in% log_names) # & any(stringr::str_detect(log_names, run_name))
}
if (!is.null(path_model_card)) {
mc_names <- list.files(path_model_card)
name_present_mc <- (run_name %in% mc_names) # & any(stringr::str_detect(log_names, run_name))
}
name_present <- name_present_tb | name_present_cp | name_present_log | name_present_mc
if (name_present & auto_extend) {
ends_with_int <- stringr::str_detect(run_name, "_\\d+$")
if (ends_with_int) {
int_ending <- stringr::str_extract(run_name, "\\d+$") %>% as.integer()
run_name_new <- paste0(stringr::str_remove(run_name, "\\d+$"), int_ending + 1)
} else {
run_name_new <- paste0(run_name, "_2")
}
int_ending <- stringr::str_subset(c(tb_names, cp_names, log_names, mc_names),
paste0("^", stringr::str_remove(run_name, "_\\d+$"))) %>% unique()
int_ending <- stringr::str_subset(int_ending, "_\\d+$")
if (length(int_ending) > 0) {
max_int_ending <- stringr::str_extract(int_ending, "_\\d+$") %>% stringr::str_remove("_") %>% as.integer() %>% max()
if (!ends_with_int) {
run_name_new <- paste0(run_name, "_", max_int_ending + 1)
} else {
run_name_new <- paste0(stringr::str_remove(run_name, "\\d+$"), max_int_ending + 1)
}
}
if (length(int_ending) > 0) {
name_order <- stringr::str_extract(int_ending, "\\d+$") %>% as.integer() %>% order()
prev_names <- unique(c(run_name, int_ending[name_order]))
if (ends_with_int) {
name_order <- stringr::str_extract(prev_names, "\\d+$") %>% as.integer() %>% order()
prev_names <- prev_names[name_order]
}
if (length(prev_names) > 8) {
old_names_start <- paste(prev_names[1:2], collapse = ", ")
old_names_end <- paste(prev_names[(length(prev_names)-1) : length(prev_names)], collapse = ", ")
#old_names <- paste(old_names_start, ",...,", old_names_end) # outputs range of previously used names
old_names <- run_name
} else {
old_names <- paste(prev_names, collapse = ", ")
}
message(paste("run_name", old_names, "already present, setting run_name to", run_name_new))
} else {
message(paste("run_name", run_name, "already present, setting run_name to", run_name_new))
}
}
if (name_present & !auto_extend) {
stop("run_name already present, please give your run a unique name")
}
if (!name_present) {
return(run_name)
}
return(run_name_new)
}
#' Continue training from model card
#'
#' Use information from model card to resume from the corresponding checkpoint using the same training arguments.
#'
#' @param path_model_card Path to model card to resume training from.
#' @param seed Seed for reproducible results. If `NULL`, set random seed.
#' @param epoch Epoch to resume from. If `NULL`, use last epoch.
#' @param new_run_name New run name. If `NULL`, new run name is old run name + '_cont'.
#' @param new_args Named list of arguments to overwrite. Will use previous arguments from model card otherwise.
#' For example, if you want to change the batch size and padding option:
#' `new_args = list(batch_size = 6, padding = TRUE)`.
#' @param new_compile List of arguments to compile the model again. If `NULL`, use compiled model from checkpoint.
#' Example: `new_compile = list(loss = 'binary_crossentropy', metrics = 'acc', optimizer = keras::optimizer_adam())`
#' @param use_mirrored_strategy Whether to use distributed mirrored strategy.
#' If NULL, will use distributed mirrored strategy only if >1 GPU available.
#' @param unfreeze If `TRUE`, set trainable attribute of model to `TRUE` (unfreeze weights).
#' @param verbose Whether to print all training arguments.
#' @examples
#' \donttest{
#' library(keras)
#' # create dummy data and temp directories
#' path_train_1 <- tempfile()
#' path_train_2 <- tempfile()
#' path_val_1 <- tempfile()
#' path_val_2 <- tempfile()
#' path_checkpoint <- tempfile()
#' dir.create(path_checkpoint)
#' path_model_card <- tempfile()
#' dir.create(path_model_card)
#'
#' for (current_path in c(path_train_1, path_train_2,
#' path_val_1, path_val_2)) {
#' dir.create(current_path)
#' create_dummy_data(file_path = current_path,
#' num_files = 3,
#' seq_length = 10,
#' num_seq = 5,
#' vocabulary = c("a", "c", "g", "t"))
#' }
#'
#' # create model
#' model <- create_model_lstm_cnn(layer_lstm = 8, layer_dense = 2, maxlen = 5)
#'
#' # train model
#' run_name <- 'test_run_1'
#' hist <- train_model(train_type = "label_folder",
#' run_name = run_name,
#' path_checkpoint = path_checkpoint,
#' model_card = list(path_model_card = path_model_card, description = 'test run'),
#' model = model,
#' path = c(path_train_1, path_train_2),
#' path_val = c(path_val_1, path_val_2),
#' batch_size = 8,
#' epochs = 3,
#' steps_per_epoch = 6,
#' vocabulary_label = c("label_1", "label_2"))
#'
#' # resume training
#' resume_training_from_model_card(path_model_card = file.path(path_model_card, run_name))
#' }
#' @returns A list of training metrics.
#' @export
resume_training_from_model_card <- function(path_model_card,
seed = NULL,
epoch = NULL,
new_run_name = NULL,
new_args = NULL,
new_compile = NULL,
use_mirrored_strategy = NULL,
unfreeze = FALSE,
verbose = FALSE) {
if (is.null(use_mirrored_strategy)) use_mirrored_strategy <- ifelse(count_gpu() > 1, TRUE, FALSE)
info <- file.info(path_model_card)
is_directory <- info$isdir
if (is.na(is_directory)) {
stop("model_card path does not exist.\n")
} else if (is_directory) {
mc <- get_mc(path_model_card = path_model_card, epoch = epoch)
} else {
mc <- path_model_card
}
mc_args <- readRDS(mc)
train_args_mc <- mc_args$train_model_args
new_train_args <- train_args_mc
if (is.null(new_run_name)) {
new_train_args$run_name <- set_new_run_name(train_args_mc$run_name)
} else {
new_train_args$run_name <- new_run_name
}
# overwrite args
if (is.null(seed)) seed <- get_seed()
new_train_args$seed <- seed
# load checkpoint to resume from
if (is.null(train_args_mc$path_checkpoint)) {
stop('Did not save checkpoints in the run from model card')
}
if (unfreeze) {
model$trainable <- TRUE
}
if (use_mirrored_strategy) {
mirrored_strategy <- tensorflow::tf$distribute$MirroredStrategy()
with(mirrored_strategy$scope(), {
model <- load_model(cp_path = file.path(train_args_mc$path_checkpoint, train_args_mc$run_name),
ep_index = epoch,
new_compile = new_compile)
})
} else {
model <- load_model(cp_path = file.path(train_args_mc$path_checkpoint, train_args_mc$run_name),
ep_index = epoch,
new_compile = new_compile)
}
new_train_args$model <- model
if (!is.null(new_args)) {
stopifnot(is.list(new_args))
for (n in names(new_args))
new_train_args[[n]] <- new_args[[n]]
}
new_train_args$model_card[['cont_train_info']] <- paste0('run continues training from run ',
train_args_mc, ' and epoch ',
max(mc_args$logs$processing_step))
if (verbose) {
print(new_train_args)
}
do.call(train_model, new_train_args)
}
get_mc <- function(path_model_card, epoch = NULL) {
all_cards <- list.files(path_model_card, full.names = TRUE)
all_epochs <- vector("integer", length(all_cards))
for (i in seq_along(all_cards)) {
split_string <- all_cards[i] %>% basename() %>% stringr::str_split("_")
all_epochs[i] <- split_string[[1]][2] %>% as.integer()
}
if (is.null(epoch)) epoch <- max(all_epochs)
index <- all_epochs == epoch
if (sum(index) == 0) {
error_message <- paste('epoch not found in model card directory, possible values:',
paste(all_epochs, collapse = ", "))
stop(error_message)
}
mc <- all_cards[index]
return(mc)
}
load_model <- function(cp_path,
ep_index,
new_compile) {
model <- load_cp(cp_path,
ep_index = ep_index,
mirrored_strategy = FALSE,
compile = ifelse(is.null(new_compile), TRUE, FALSE))
if (!is.null(new_compile)) {
model <- keras::compile(model,
optimizer = new_compile$optimizer,
loss = new_compile$loss,
metrics = new_compile$metrics)
}
return(model)
}
get_seed <- function() {
current_time <- Sys.time()
current_time <- as.numeric(current_time) * 1e2
seed_value <- (current_time %% 10^5) %>% as.integer()
set.seed(seed_value)
return(sample(1:10^6, 2))
}
set_new_run_name <- function(run_name_old) {
run_name_new <- paste0(run_name_old, '_cont')
return(run_name_new)
}