[0ce940]: / tests / cli / test_train.py

Download this file

117 lines (100 with data), 3.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
"""Test bpnet train
"""
import os
import pytest
from bpnet.cli.train import bpnet_train
from pathlib import Path
from bpnet.seqmodel import SeqModel
from concise.preprocessing import encodeDNA
import gin
import keras.backend as K
def test_output_files(trained_model):
K.clear_session()
output_files = os.listdir(str(trained_model))
expected_files = [
'config.gin',
'config.gin.json',
'bpnet-train.kwargs.json',
'dataspec.yml',
'evaluate.ipynb',
'evaluate.html',
'evaluation.valid.json',
'history.csv',
'model.h5',
'seq_model.pkl',
'note_params.json',
]
for f in expected_files:
assert f in output_files
m = SeqModel.load(trained_model / 'seq_model.pkl')
m.predict(encodeDNA(["A" * 200]))
def test_output_files_model_w_bias(trained_model_w_bias):
K.clear_session()
output_files = os.listdir(str(trained_model_w_bias))
expected_files = [
'config.gin',
'config.gin.json',
'bpnet-train.kwargs.json',
'dataspec.yml',
'evaluate.ipynb',
'evaluate.html',
'evaluation.valid.json',
'history.csv',
'model.h5',
'seq_model.pkl',
'note_params.json',
]
for f in expected_files:
assert f in output_files
m = SeqModel.load(trained_model_w_bias / 'seq_model.pkl')
m.predict(encodeDNA(["A" * 200]))
def test_trained_model_bed6(tmp_path, data_dir, config_gin, dataspec_bed6):
K.clear_session()
gin.clear_config()
bpnet_train(dataspec=str(dataspec_bed6),
output_dir=str(tmp_path),
premade='bpnet9',
config=str(config_gin),
override='seq_width=100;train.batch_size=8',
num_workers=2
)
def test_trained_model_override_in_memory(tmp_path, data_dir, config_gin, dataspec_bias):
K.clear_session()
gin.clear_config()
bpnet_train(dataspec=str(dataspec_bias),
output_dir=str(tmp_path),
premade='bpnet9',
config=str(config_gin),
in_memory=True,
override='seq_width=190;train.batch_size=8',
num_workers=2
)
def test_train_regions(tmp_path, data_dir, config_gin, dataspec_bias, regions):
K.clear_session()
gin.clear_config()
bpnet_train(dataspec=str(dataspec_bias),
output_dir=str(tmp_path),
premade='bpnet9',
config=str(config_gin),
override=f'bpnet_data.intervals_file="{regions}"',
num_workers=2
)
def test_trained_model_premade_pyspec(tmp_path, data_dir, config_gin, dataspec_bias):
K.clear_session()
gin.clear_config()
bpnet_train(dataspec=str(dataspec_bias),
output_dir=str(tmp_path),
premade='bpnet9-pyspec',
config=str(config_gin),
num_workers=2
)
def test_trained_model_vmtouch(tmp_path, data_dir, config_gin, dataspec_bias):
K.clear_session()
gin.clear_config()
bpnet_train(dataspec=str(dataspec_bias),
output_dir=str(tmp_path),
premade='bpnet9',
config=str(config_gin),
vmtouch=True,
num_workers=1
)