Diff of /tests/cli/test_train.py [000000] .. [d45a3a]

Switch to unified view

a b/tests/cli/test_train.py
1
"""Test bpnet train
2
"""
3
import os
4
import pytest
5
from bpnet.cli.train import bpnet_train
6
from pathlib import Path
7
from bpnet.seqmodel import SeqModel
8
from concise.preprocessing import encodeDNA
9
import gin
10
import keras.backend as K
11
12
13
def test_output_files(trained_model):
14
    K.clear_session()
15
    output_files = os.listdir(str(trained_model))
16
    expected_files = [
17
        'config.gin',
18
        'config.gin.json',
19
        'bpnet-train.kwargs.json',
20
        'dataspec.yml',
21
        'evaluate.ipynb',
22
        'evaluate.html',
23
        'evaluation.valid.json',
24
        'history.csv',
25
        'model.h5',
26
        'seq_model.pkl',
27
        'note_params.json',
28
    ]
29
    for f in expected_files:
30
        assert f in output_files
31
32
    m = SeqModel.load(trained_model / 'seq_model.pkl')
33
    m.predict(encodeDNA(["A" * 200]))
34
35
36
def test_output_files_model_w_bias(trained_model_w_bias):
37
    K.clear_session()
38
    output_files = os.listdir(str(trained_model_w_bias))
39
    expected_files = [
40
        'config.gin',
41
        'config.gin.json',
42
        'bpnet-train.kwargs.json',
43
        'dataspec.yml',
44
        'evaluate.ipynb',
45
        'evaluate.html',
46
        'evaluation.valid.json',
47
        'history.csv',
48
        'model.h5',
49
        'seq_model.pkl',
50
        'note_params.json',
51
    ]
52
    for f in expected_files:
53
        assert f in output_files
54
55
    m = SeqModel.load(trained_model_w_bias / 'seq_model.pkl')
56
    m.predict(encodeDNA(["A" * 200]))
57
58
59
def test_trained_model_bed6(tmp_path, data_dir, config_gin, dataspec_bed6):
60
    K.clear_session()
61
    gin.clear_config()
62
    bpnet_train(dataspec=str(dataspec_bed6),
63
                output_dir=str(tmp_path),
64
                premade='bpnet9',
65
                config=str(config_gin),
66
                override='seq_width=100;train.batch_size=8',
67
                num_workers=2
68
                )
69
70
71
def test_trained_model_override_in_memory(tmp_path, data_dir, config_gin, dataspec_bias):
72
    K.clear_session()
73
    gin.clear_config()
74
    bpnet_train(dataspec=str(dataspec_bias),
75
                output_dir=str(tmp_path),
76
                premade='bpnet9',
77
                config=str(config_gin),
78
                in_memory=True,
79
                override='seq_width=190;train.batch_size=8',
80
                num_workers=2
81
                )
82
83
84
def test_train_regions(tmp_path, data_dir, config_gin, dataspec_bias, regions):
85
    K.clear_session()
86
    gin.clear_config()
87
    bpnet_train(dataspec=str(dataspec_bias),
88
                output_dir=str(tmp_path),
89
                premade='bpnet9',
90
                config=str(config_gin),
91
                override=f'bpnet_data.intervals_file="{regions}"',
92
                num_workers=2
93
                )
94
95
96
def test_trained_model_premade_pyspec(tmp_path, data_dir, config_gin, dataspec_bias):
97
    K.clear_session()
98
    gin.clear_config()
99
    bpnet_train(dataspec=str(dataspec_bias),
100
                output_dir=str(tmp_path),
101
                premade='bpnet9-pyspec',
102
                config=str(config_gin),
103
                num_workers=2
104
                )
105
106
107
def test_trained_model_vmtouch(tmp_path, data_dir, config_gin, dataspec_bias):
108
    K.clear_session()
109
    gin.clear_config()
110
    bpnet_train(dataspec=str(dataspec_bias),
111
                output_dir=str(tmp_path),
112
                premade='bpnet9',
113
                config=str(config_gin),
114
                vmtouch=True,
115
                num_workers=1
116
                )