a b/setup.py
1
#!/usr/bin/env python
2
# -*- coding: utf-8 -*-
3
4
from setuptools import setup, find_packages
5
6
requirements = [
7
    "argh",
8
    "attr",
9
    "related",
10
    "cloudpickle>=1.0.0",
11
12
    "concise==0.6.7",
13
    "deepexplain",
14
15
    # ml
16
    "gin-config",
17
    "keras==2.2.4",
18
    "scikit-learn",
19
    # "tensorflow",
20
21
    # numerics
22
    "h5py",
23
    "numpy",
24
    "pandas",
25
    "scipy",
26
    "statsmodels",
27
28
    # Plotting
29
    "matplotlib>=3.0.2",
30
    "plotnine",
31
    "seaborn",
32
33
    # genomics
34
    "pybigwig",
35
    "pybedtools",  # remove?
36
    "modisco==0.5.3.0",
37
    # "pyranges",
38
39
    "joblib",
40
    "cloudpickle>=1.0.0",  # - remove?
41
    "kipoi>=0.6.8",
42
    "kipoi-utils>=0.3.0",
43
    "kipoiseq>=0.2.2",
44
45
    "papermill",
46
    "jupyter_client>=6.1.2",
47
    "ipykernel",
48
    "nbconvert>=5.5.0",
49
    "vdom>=0.6",
50
51
    # utils
52
    "ipython",
53
    "tqdm",
54
    # "pprint",
55
56
57
    # Remove
58
    "genomelake",
59
    "pysam",  # replace with pyfaidx
60
]
61
62
optional = [
63
    "comet_ml",
64
    "wandb",
65
    "fastparquet",
66
    "python-snappy",
67
    "ipywidgets",  # for motif simulation
68
]
69
70
test_requirements = [
71
    "pytest>=3.3.1",
72
    "pytest-cov>=2.6.1",
73
    # "pytest-xdist",
74
    "gdown",   # download files from google drive
75
    "virtualenv",
76
]
77
78
dependency_links = [
79
    "deepexplain @ git+https://github.com/kundajelab/DeepExplain.git@#egg=deepexplain-0.1"
80
]
81
82
83
setup(
84
    name="bpnet",
85
    version='0.0.23',
86
    description=("BPNet: toolkit to learn motif synthax from high-resolution functional genomics data"
87
                 " using convolutional neural networks"),
88
    author="Ziga Avsec",
89
    author_email="avsec@in.tum.de",
90
    url="https://github.com/kundajelab/bpnet",
91
    packages=find_packages(),
92
    install_requires=requirements,
93
    extras_require={
94
        "dev": test_requirements,
95
        "extras": optional,
96
    },
97
    license="MIT license",
98
    entry_points={'console_scripts': ['bpnet = bpnet.__main__:main']},
99
    zip_safe=False,
100
    keywords=["deep learning",
101
              "computational biology",
102
              "bioinformatics",
103
              "genomics"],
104
    test_suite="tests",
105
    package_data={'bpnet': ['logging.conf']},
106
    include_package_data=True,
107
    tests_require=test_requirements
108
)