|
a |
|
b/bpnet/plot/vdom.py |
|
|
1 |
"""Vdom visualization for modisco |
|
|
2 |
""" |
|
|
3 |
import pandas as pd |
|
|
4 |
from bpnet.plot.heatmaps import multiple_heatmap_stranded_profile, multiple_heatmap_contribution_profile, heatmap_sequence |
|
|
5 |
from bpnet.cli.contrib import ContribFile |
|
|
6 |
from collections import OrderedDict |
|
|
7 |
from bpnet.plot.profiles import extract_signal, multiple_plot_stranded_profile, hist_position, bar_seqlets_per_example, box_counts |
|
|
8 |
from bpnet.functions import mean |
|
|
9 |
import numpy as np |
|
|
10 |
import pandas as pd |
|
|
11 |
from vdom.helpers import (h1, p, li, img, div, b, br, ul, img, |
|
|
12 |
details, summary, |
|
|
13 |
table, thead, th, tr, tbody, td, ol) |
|
|
14 |
import io |
|
|
15 |
import base64 |
|
|
16 |
import urllib |
|
|
17 |
import matplotlib.pyplot as plt |
|
|
18 |
import os |
|
|
19 |
|
|
|
20 |
|
|
|
21 |
def fig2vdom(fig, **kwargs): |
|
|
22 |
"""Convert a matplotlib figure to an online image |
|
|
23 |
""" |
|
|
24 |
buf = io.BytesIO() |
|
|
25 |
fig.savefig(buf, format='png', bbox_inches='tight') |
|
|
26 |
buf.seek(0) |
|
|
27 |
string = base64.b64encode(buf.read()) |
|
|
28 |
plt.close() |
|
|
29 |
return img(src='data:image/png;base64,' + urllib.parse.quote(string), **kwargs) |
|
|
30 |
|
|
|
31 |
|
|
|
32 |
def vdom_pssm(pssm, letter_width=0.2, letter_height=0.8, **kwargs): |
|
|
33 |
"""Nicely plot the pssm |
|
|
34 |
""" |
|
|
35 |
import matplotlib.pyplot as plt |
|
|
36 |
from concise.utils.plot import seqlogo_fig, seqlogo |
|
|
37 |
fig, ax = plt.subplots(figsize=(letter_width * len(pssm), letter_height)) |
|
|
38 |
ax.axison = False |
|
|
39 |
seqlogo(pssm, ax=ax) |
|
|
40 |
plt.subplots_adjust(left=0, right=1, top=1, bottom=0) |
|
|
41 |
return fig2vdom(fig, **kwargs) |
|
|
42 |
|
|
|
43 |
|
|
|
44 |
def vdom_footprint(arr, r_height=None, text=None, |
|
|
45 |
fontsize=32, figsize=(3, 1), **kwargs): |
|
|
46 |
"""Plot the sparkline for the footprint |
|
|
47 |
|
|
|
48 |
Args: |
|
|
49 |
arr: np.array of shape (seq_len, 2) |
|
|
50 |
r_height: if not None, add a rectangle with heigth = r_height |
|
|
51 |
text: add additional text to top right corner |
|
|
52 |
fontsize: size of the additional font |
|
|
53 |
figsize: figure size |
|
|
54 |
**kwargs: additional kwargs passed to `fig2vdom` |
|
|
55 |
|
|
|
56 |
Returns: |
|
|
57 |
VDOM object containing the image |
|
|
58 |
""" |
|
|
59 |
import matplotlib.patches as patches |
|
|
60 |
|
|
|
61 |
fig, ax = plt.subplots(figsize=figsize) |
|
|
62 |
# print(arr.max()) |
|
|
63 |
if r_height is not None: |
|
|
64 |
rect = patches.Rectangle((0, 0), len(arr), |
|
|
65 |
r_height, # / arr.max(), |
|
|
66 |
linewidth=1, |
|
|
67 |
edgecolor=None, |
|
|
68 |
alpha=0.3, |
|
|
69 |
facecolor='lightgrey') |
|
|
70 |
ax.add_patch(rect) |
|
|
71 |
ax.set_ylim([0, max(r_height, arr.max())]) |
|
|
72 |
ax.axhline(r_height, alpha=0.3, color='black', linestyle='dashed') |
|
|
73 |
ax.plot(arr[:, 0]) |
|
|
74 |
ax.plot(arr[:, 1]) |
|
|
75 |
|
|
|
76 |
if text is not None: |
|
|
77 |
# Annotate text top-left |
|
|
78 |
pass |
|
|
79 |
ax.text(1, 1, text, |
|
|
80 |
fontsize=fontsize, |
|
|
81 |
transform=ax.transAxes, |
|
|
82 |
verticalalignment='top', |
|
|
83 |
horizontalalignment='right') |
|
|
84 |
|
|
|
85 |
ax.axison = False |
|
|
86 |
plt.subplots_adjust(left=0, right=1, top=1, bottom=0) |
|
|
87 |
return fig2vdom(fig, **kwargs) |
|
|
88 |
|
|
|
89 |
|
|
|
90 |
def template_vdom_pattern(name, n_seqlets, trimmed_motif, |
|
|
91 |
full_motif, figures_url, add_plots={}, metacluster=""): |
|
|
92 |
|
|
|
93 |
return details(summary(name, f": # seqlets: {n_seqlets}", |
|
|
94 |
# br(), |
|
|
95 |
trimmed_motif), # ", rc: ", motif_rc), |
|
|
96 |
details(summary("Aggregated profiles and contribution scores)"), |
|
|
97 |
img(src=figures_url + "/agg_profile_contribcores.png", width=840), |
|
|
98 |
), |
|
|
99 |
details(summary("Aggregated hypothetical contribution scores)"), |
|
|
100 |
img(src=figures_url + "/agg_profile_hypcontribscores.png", width=840), |
|
|
101 |
), |
|
|
102 |
details(summary("Sequence"), |
|
|
103 |
full_motif, |
|
|
104 |
br(), |
|
|
105 |
img(src=figures_url + "/heatmap_seq.png", width=840 // 2), |
|
|
106 |
), |
|
|
107 |
details(summary("ChIP-nexus counts"), |
|
|
108 |
img(src=figures_url + "/profile_aggregated.png", width=840), |
|
|
109 |
img(src=figures_url + "/profile_heatmap.png", width=840), |
|
|
110 |
), |
|
|
111 |
details(summary("Contribution scores (profile)"), |
|
|
112 |
img(src=figures_url + "/contrib_profile.png", width=840), |
|
|
113 |
), |
|
|
114 |
details(summary("Contribution scores (counts)"), |
|
|
115 |
img(src=figures_url + "/contrib_counts.png", width=840), |
|
|
116 |
), |
|
|
117 |
*[details(summary(k), *v) for k, v in add_plots.items()], |
|
|
118 |
id=metacluster + "/" + name |
|
|
119 |
) |
|
|
120 |
|
|
|
121 |
|
|
|
122 |
def vdom_pattern(mr, metacluster, pattern, |
|
|
123 |
figdir, |
|
|
124 |
total_counts, |
|
|
125 |
dfp, |
|
|
126 |
trim_frac=0.05, |
|
|
127 |
letter_width=0.2, height=0.8): |
|
|
128 |
|
|
|
129 |
# get the trimmed motifs |
|
|
130 |
trimmed_motif = vdom_pssm(mr.get_pssm(metacluster + '/' + pattern, |
|
|
131 |
rc=False, trim_frac=trim_frac), |
|
|
132 |
letter_width=letter_width, |
|
|
133 |
height=height) |
|
|
134 |
full_motif = vdom_pssm(mr.get_pssm(metacluster + '/' + pattern, |
|
|
135 |
rc=False, trim_frac=0), |
|
|
136 |
letter_width=letter_width, |
|
|
137 |
height=height) |
|
|
138 |
|
|
|
139 |
# ---------------- |
|
|
140 |
# add new plots here |
|
|
141 |
dfpp = dfp[dfp.pattern == (metacluster + "/" + pattern)] |
|
|
142 |
tasks = dfp.peak_id.unique() |
|
|
143 |
pattern_idx = dfpp.example_idx.unique() |
|
|
144 |
add_plots = OrderedDict([ |
|
|
145 |
("Positional distribution", |
|
|
146 |
[fig2vdom(hist_position(dfpp, tasks=tasks)), |
|
|
147 |
fig2vdom(bar_seqlets_per_example(dfpp, tasks=tasks)) |
|
|
148 |
]), |
|
|
149 |
("Total count distribution", |
|
|
150 |
[p(f"Pattern occurs in {len(pattern_idx)} / {len(total_counts)} regions" |
|
|
151 |
f" ({100*len(pattern_idx)/len(total_counts):.1f}%)"), |
|
|
152 |
fig2vdom(box_counts(total_counts, pattern_idx))] |
|
|
153 |
) |
|
|
154 |
]) |
|
|
155 |
# ---------------- |
|
|
156 |
|
|
|
157 |
return template_vdom_pattern(name=pattern, |
|
|
158 |
n_seqlets=mr.n_seqlets(metacluster + "/" + pattern), |
|
|
159 |
trimmed_motif=trimmed_motif, |
|
|
160 |
full_motif=full_motif, |
|
|
161 |
figures_url=os.path.join(figdir, f"{metacluster}/{pattern}"), |
|
|
162 |
add_plots=add_plots, |
|
|
163 |
metacluster=metacluster, |
|
|
164 |
) |
|
|
165 |
|
|
|
166 |
|
|
|
167 |
def template_vdom_metacluster(name, n_patterns, n_seqlets, important_for, patterns, is_open=False): |
|
|
168 |
return details(summary(b(name), f", # patterns: {n_patterns}," |
|
|
169 |
f" # seqlets: {n_seqlets}, " |
|
|
170 |
"important for: ", b(important_for)), |
|
|
171 |
ul([li(pattern) for pattern in patterns], start=0), |
|
|
172 |
id=name, |
|
|
173 |
open=is_open) |
|
|
174 |
|
|
|
175 |
|
|
|
176 |
def vdom_metacluster(mr, metacluster, figdir, total_counts, dfp=None, is_open=True, |
|
|
177 |
**kwargs): |
|
|
178 |
patterns = mr.pattern_names(metacluster) |
|
|
179 |
n_seqlets = sum([mr.n_seqlets(metacluster + "/" + pattern) |
|
|
180 |
for pattern in patterns]) |
|
|
181 |
n_patterns = len(patterns) |
|
|
182 |
|
|
|
183 |
def render_act(task, act): |
|
|
184 |
"""Render the activity vector |
|
|
185 |
""" |
|
|
186 |
task = task.replace("/weighted", "").replace("/profile", "") # omit weighted or profile |
|
|
187 |
if act == 0: |
|
|
188 |
return "" |
|
|
189 |
elif act < 0: |
|
|
190 |
return f"-{task}" |
|
|
191 |
else: |
|
|
192 |
return task |
|
|
193 |
activities = mr.metacluster_activity(metacluster) |
|
|
194 |
|
|
|
195 |
# tasks = mr.tasks() |
|
|
196 |
# tasks = unique_list([task.split("/")[0] for task in tasks]) # HACK. For some |
|
|
197 |
# TODO - one could pretify this here by using Task, and cTask |
|
|
198 |
|
|
|
199 |
important_for = ",".join([render_act(task, act) |
|
|
200 |
for task, act in zip(mr.tasks(), activities) |
|
|
201 |
if act != 0]) |
|
|
202 |
pattern_vdoms = [vdom_pattern(mr, metacluster, pattern, figdir, total_counts, |
|
|
203 |
dfp, **kwargs) |
|
|
204 |
for pattern in patterns] |
|
|
205 |
return template_vdom_metacluster(metacluster, |
|
|
206 |
n_patterns, |
|
|
207 |
n_seqlets, |
|
|
208 |
important_for, |
|
|
209 |
pattern_vdoms, |
|
|
210 |
is_open=is_open |
|
|
211 |
) |
|
|
212 |
|
|
|
213 |
|
|
|
214 |
def vdom_modisco(mr, figdir, total_counts, dfp=None, is_open=True, **kwargs): |
|
|
215 |
return div([vdom_metacluster(mr, metacluster, figdir, total_counts, dfp=dfp, |
|
|
216 |
is_open=is_open, **kwargs) |
|
|
217 |
for metacluster in mr.metaclusters() |
|
|
218 |
if len(mr.pattern_names(metacluster)) > 0]) |
|
|
219 |
|
|
|
220 |
|
|
|
221 |
def get_signal(seqlets, d: ContribFile, tasks, resize_width=200): |
|
|
222 |
thr_one_hot = d.get_seq() |
|
|
223 |
|
|
|
224 |
if resize_width is None: |
|
|
225 |
# width = first seqlets |
|
|
226 |
resize_width = seqlets[0].end - seqlets[0].start |
|
|
227 |
|
|
|
228 |
# get valid seqlets |
|
|
229 |
start_pad = np.ceil(resize_width / 2) |
|
|
230 |
end_pad = thr_one_hot.shape[1] - start_pad |
|
|
231 |
valid_seqlets = [s.resize(resize_width) |
|
|
232 |
for s in seqlets |
|
|
233 |
if (s.center() > start_pad) and (s.center() < end_pad)] |
|
|
234 |
|
|
|
235 |
# prepare data |
|
|
236 |
ex_signal = {task: extract_signal(d.get_profiles()[task], valid_seqlets) |
|
|
237 |
for task in tasks} |
|
|
238 |
|
|
|
239 |
ex_contrib_profile = {task: extract_signal(d.get_contrib()[task], |
|
|
240 |
valid_seqlets).sum(axis=-1) |
|
|
241 |
for task in tasks} |
|
|
242 |
|
|
|
243 |
if d.contains_contrib_score('count'): |
|
|
244 |
ex_contrib_counts = {task: extract_signal(d.get_contrib("count")[task], |
|
|
245 |
valid_seqlets).sum(axis=-1) for task in tasks} |
|
|
246 |
elif d.contains_contrib_score('counts/pre-act'): |
|
|
247 |
ex_contrib_counts = {task: extract_signal(d.get_contrib("counts/pre-act")[task], |
|
|
248 |
valid_seqlets).sum(axis=-1) for task in tasks} |
|
|
249 |
else: |
|
|
250 |
ex_contrib_counts = None |
|
|
251 |
|
|
|
252 |
ex_seq = extract_signal(thr_one_hot, valid_seqlets) |
|
|
253 |
|
|
|
254 |
seq, contrib, hyp_contrib, profile, ranges = d.get_all() |
|
|
255 |
|
|
|
256 |
total_counts = sum([x.sum(axis=-1).sum(axis=-1) for x in ex_signal.values()]) |
|
|
257 |
sort_idx = np.argsort(-total_counts) |
|
|
258 |
return ex_signal, ex_contrib_profile, ex_contrib_counts, ex_seq, sort_idx |
|
|
259 |
|
|
|
260 |
|
|
|
261 |
def vdm_heatmaps(seqlets, d, included_samples, tasks, pattern, top_n=None, pssm_fig=None, opened=False, resize_width=200): |
|
|
262 |
ex_signal, ex_contrib_profile, ex_contrib_counts, ex_seq, sort_idx = get_signal(seqlets, d, included_samples, tasks, |
|
|
263 |
resize_width=resize_width) |
|
|
264 |
|
|
|
265 |
if top_n is not None: |
|
|
266 |
sort_idx = sort_idx[:top_n] |
|
|
267 |
return div(details(summary("Sequence:"), |
|
|
268 |
pssm_fig, |
|
|
269 |
br(), |
|
|
270 |
fig2vdom(heatmap_sequence(ex_seq, sort_idx=sort_idx, figsize_tmpl=(10, 15), aspect='auto')), |
|
|
271 |
open=opened |
|
|
272 |
), |
|
|
273 |
|
|
|
274 |
details(summary("ChIP-nexus counts:"), |
|
|
275 |
fig2vdom(multiple_plot_stranded_profile(ex_signal, figsize_tmpl=(20 / len(ex_signal), 3))), |
|
|
276 |
# TODO - change |
|
|
277 |
fig2vdom(multiple_heatmap_stranded_profile(ex_signal, sort_idx=sort_idx, figsize=(20, 20))), |
|
|
278 |
open=opened |
|
|
279 |
), |
|
|
280 |
details(summary("Contribution scores (profile)"), |
|
|
281 |
fig2vdom(multiple_heatmap_contribution_profile(ex_contrib_profile, sort_idx=sort_idx, figsize=(20, 20))), |
|
|
282 |
open=opened |
|
|
283 |
), |
|
|
284 |
details(summary("Contribution scores (counts)"), |
|
|
285 |
fig2vdom(multiple_heatmap_contribution_profile(ex_contrib_counts, sort_idx=sort_idx, figsize=(20, 20))), |
|
|
286 |
open=opened |
|
|
287 |
) |
|
|
288 |
) |
|
|
289 |
|
|
|
290 |
|
|
|
291 |
def write_heatmap_pngs(seqlets, d, tasks, pattern, output_dir, resize_width=200): |
|
|
292 |
"""Write out histogram png's |
|
|
293 |
""" |
|
|
294 |
# get the data |
|
|
295 |
ex_signal, ex_contrib_profile, ex_contrib_counts, ex_seq, sort_idx = get_signal(seqlets, d, tasks, |
|
|
296 |
resize_width=resize_width) |
|
|
297 |
# get the plots |
|
|
298 |
figs = dict( |
|
|
299 |
heatmap_seq=heatmap_sequence(ex_seq, sort_idx=sort_idx, figsize_tmpl=(10, 15), aspect='auto'), |
|
|
300 |
profile_aggregated=multiple_plot_stranded_profile(ex_signal, figsize_tmpl=(20 / len(ex_signal), 3)), |
|
|
301 |
profile_heatmap=multiple_heatmap_stranded_profile(ex_signal, sort_idx=sort_idx, figsize=(20, 20)), |
|
|
302 |
contrib_profile=multiple_heatmap_contribution_profile(ex_contrib_profile, sort_idx=sort_idx, figsize=(20, 20)), |
|
|
303 |
) |
|
|
304 |
|
|
|
305 |
if ex_contrib_counts is not None: |
|
|
306 |
figs['contrib_counts'] = multiple_heatmap_contribution_profile(ex_contrib_counts, sort_idx=sort_idx, figsize=(20, 20)) |
|
|
307 |
# write the figures |
|
|
308 |
for k, fig in figs.items(): |
|
|
309 |
fig.savefig(os.path.join(output_dir, k + ".png"), bbox_inches='tight') |
|
|
310 |
|
|
|
311 |
|
|
|
312 |
def df2html(df, uuid='table', style='width:100%'): |
|
|
313 |
import seaborn as sns |
|
|
314 |
cm = sns.light_palette("green", as_cmap=True) |
|
|
315 |
# leverage pandas style to color cells according to values |
|
|
316 |
# https://pandas.pydata.org/pandas-docs/stable/style.html |
|
|
317 |
s = df.style.background_gradient(cmap=cm).set_precision(3).hide_index() |
|
|
318 |
return s.render(uuid=uuid).replace(f'<table id="T_{uuid}"', |
|
|
319 |
f'<table id="T_{uuid}" class="compact hover nowrap" style="{style}"') |
|
|
320 |
|
|
|
321 |
|
|
|
322 |
def df2html_old(df, style='width:100%'): |
|
|
323 |
add_tags = f'id="table_id" style="{style}"' |
|
|
324 |
with pd.option_context('display.max_colwidth', -1): |
|
|
325 |
table = df.to_html(escape=False, |
|
|
326 |
classes='display nowrap', |
|
|
327 |
float_format='%.2g', |
|
|
328 |
index=False).replace(' class="dataframe', f' {add_tags} class="dataframe') |
|
|
329 |
return table |
|
|
330 |
|
|
|
331 |
# <link rel="stylesheet" type="text/css" href="https://cdn.datatables.net/1.10.13/css/jquery.dataTables.css"> |
|
|
332 |
|
|
|
333 |
def get_datatable_header(): |
|
|
334 |
return ''' |
|
|
335 |
<script type="text/javascript" src="https://code.jquery.com/jquery-3.3.1.js"></script> |
|
|
336 |
<script type="text/javascript" src="https://cdn.datatables.net/1.10.19/js/jquery.dataTables.min.js"></script> |
|
|
337 |
<script type="text/javascript" src="https://cdn.datatables.net/colreorder/1.5.1/js/dataTables.colReorder.min.js"></script> |
|
|
338 |
<script type="text/javascript" src="https://cdn.datatables.net/fixedcolumns/3.2.6/js/dataTables.fixedColumns.min.js"></script> |
|
|
339 |
|
|
|
340 |
<link rel="stylesheet" type="text/css" href="https://cdn.datatables.net/1.10.19/css/jquery.dataTables.min.css"> |
|
|
341 |
<link rel="stylesheet" type="text/css" href="https://cdn.datatables.net/colreorder/1.5.1/css/colReorder.dataTables.min.css"> |
|
|
342 |
<link rel="stylesheet" type="text/css" href="https://cdn.datatables.net/fixedcolumns/3.2.6/css/fixedColumns.dataTables.min.css"> |
|
|
343 |
<link rel="stylesheet" href="https://cdn.jupyter.org/notebook/5.1.0/style/style.min.css"> |
|
|
344 |
''' |
|
|
345 |
|
|
|
346 |
|
|
|
347 |
def style_html_table_datatable(html_str): |
|
|
348 |
from IPython.display import HTML, Javascript |
|
|
349 |
|
|
|
350 |
header = f''' |
|
|
351 |
<!DOCTYPE html> |
|
|
352 |
<html lang="en"> |
|
|
353 |
<head> |
|
|
354 |
{get_datatable_header()} |
|
|
355 |
<head> |
|
|
356 |
</body> |
|
|
357 |
''' |
|
|
358 |
script = ''' |
|
|
359 |
<script> |
|
|
360 |
$(document).ready( function () { |
|
|
361 |
var table = $('#T_table').DataTable({ |
|
|
362 |
scrollX: true, |
|
|
363 |
scrollY: '80vh', |
|
|
364 |
scrollCollapse: true, |
|
|
365 |
paging: false, |
|
|
366 |
colReorder: true, |
|
|
367 |
columnDefs: [ |
|
|
368 |
{ orderable: false, targets: 0 }, |
|
|
369 |
{ orderable: false, targets: 1 } |
|
|
370 |
], |
|
|
371 |
ordering: [[ 1, 'asc' ]], |
|
|
372 |
colReorder: { |
|
|
373 |
fixedColumnsLeft: 1, |
|
|
374 |
fixedColumnsRight: 0 |
|
|
375 |
} |
|
|
376 |
}); |
|
|
377 |
|
|
|
378 |
new $.fn.dataTable.FixedColumns( table, { |
|
|
379 |
leftColumns: 3, |
|
|
380 |
rightColumns: 0 |
|
|
381 |
} ); |
|
|
382 |
|
|
|
383 |
// Select rows |
|
|
384 |
$('#T_table tbody').on( 'click', 'tr', function () { |
|
|
385 |
$(this).toggleClass('selected'); |
|
|
386 |
} ); |
|
|
387 |
|
|
|
388 |
} ); |
|
|
389 |
</script> |
|
|
390 |
</body> |
|
|
391 |
</html> |
|
|
392 |
''' |
|
|
393 |
|
|
|
394 |
return header + html_str + script |
|
|
395 |
|
|
|
396 |
def write_datatable_html(df, output_file, other=""): |
|
|
397 |
html = style_html_table_datatable(df2html(df) + other) |
|
|
398 |
with open(output_file, "w") as f: |
|
|
399 |
f.write(html) |
|
|
400 |
|
|
|
401 |
|
|
|
402 |
def render_datatable(df): |
|
|
403 |
from IPython.display import HTML, Javascript, display |
|
|
404 |
display(HTML(get_datatable_header() + df2html(df))) |
|
|
405 |
# display(Javascript(""" $(document).ready( function () { |
|
|
406 |
# $('#T_table').DataTable(); |
|
|
407 |
# } );""")) |
|
|
408 |
|
|
|
409 |
|
|
|
410 |
def footprint_df(footprints, dfl=None, width=120, **kwargs): |
|
|
411 |
"""Draw footprints sparklines into a pandas.DataFrame |
|
|
412 |
|
|
|
413 |
Args: |
|
|
414 |
footprints: footprint dict with `<pattern>/<task>` nested structure |
|
|
415 |
each node contains an array of shape (seq_len, 2) |
|
|
416 |
dfl: optional pandas.DataFrame of labels. Contains columns: |
|
|
417 |
pattern <task>/l |
|
|
418 |
width: width of the final plot |
|
|
419 |
**kwargs: additional kwargs to pass to vdom_footprint |
|
|
420 |
""" |
|
|
421 |
from tqdm import tqdm |
|
|
422 |
from bpnet.modisco.utils import shorten_pattern |
|
|
423 |
|
|
|
424 |
def map_label(l): |
|
|
425 |
"""Label -> short-name |
|
|
426 |
""" |
|
|
427 |
# TODO - get rid of this function |
|
|
428 |
if l is None: |
|
|
429 |
return "/" |
|
|
430 |
else: |
|
|
431 |
return l[0].upper() |
|
|
432 |
tasks = list(footprints[list(footprints)[0]].keys()) |
|
|
433 |
profile_max_median = {task: np.median([np.max(v[task]) for v in footprints.values()]) for task in tasks} |
|
|
434 |
out = [] |
|
|
435 |
|
|
|
436 |
for p, arr_d in tqdm(footprints.items()): |
|
|
437 |
try: |
|
|
438 |
labels = dfl[dfl.pattern == shorten_pattern(p)].iloc[0].to_dict() |
|
|
439 |
except Exception: |
|
|
440 |
labels = {t + "/l": None for t in tasks} |
|
|
441 |
d = {task: vdom_footprint(arr_d[task], |
|
|
442 |
r_height=profile_max_median[task], |
|
|
443 |
text=map_label(labels[task + "/l"]), |
|
|
444 |
**kwargs).to_html().replace("<img", |
|
|
445 |
f"<img width={width}") |
|
|
446 |
for task in tasks} |
|
|
447 |
d['pattern'] = shorten_pattern(p) |
|
|
448 |
out.append(d) |
|
|
449 |
return pd.DataFrame(out) |