|
a |
|
b/bpnet/heads.py |
|
|
1 |
"""Head modules |
|
|
2 |
""" |
|
|
3 |
import numpy as np |
|
|
4 |
from bpnet.utils import dict_prefix_key |
|
|
5 |
from bpnet.metrics import ClassificationMetrics, RegressionMetrics |
|
|
6 |
import keras.backend as K |
|
|
7 |
import tensorflow as tf |
|
|
8 |
import keras.layers as kl |
|
|
9 |
import gin |
|
|
10 |
import os |
|
|
11 |
import abc |
|
|
12 |
|
|
|
13 |
|
|
|
14 |
class BaseHead: |
|
|
15 |
|
|
|
16 |
# loss |
|
|
17 |
# weight -> loss weight (1 by default) |
|
|
18 |
# kwargs -> kwargs for the model |
|
|
19 |
# name -> name of the module |
|
|
20 |
# _model -> gets setup in the init |
|
|
21 |
|
|
|
22 |
@abc.abstractmethod |
|
|
23 |
def get_target(self, task): |
|
|
24 |
pass |
|
|
25 |
|
|
|
26 |
@abc.abstractmethod |
|
|
27 |
def __call__(self, inp, task): |
|
|
28 |
"""Useful for writing together the model |
|
|
29 |
Returns the output tensor |
|
|
30 |
""" |
|
|
31 |
raise NotImplementedError |
|
|
32 |
|
|
|
33 |
@abc.abstractmethod |
|
|
34 |
def get_preact_tensor(self, graph=None): |
|
|
35 |
"""Return the single pre-activation tensors |
|
|
36 |
""" |
|
|
37 |
pass |
|
|
38 |
|
|
|
39 |
@abc.abstractmethod |
|
|
40 |
def intp_tensors(self, preact_only=False, graph=None): |
|
|
41 |
"""Dictionary of all available interpretation tensors |
|
|
42 |
for `get_interpretation_node` |
|
|
43 |
""" |
|
|
44 |
raise NotImplementedError |
|
|
45 |
|
|
|
46 |
# @abc.abstractmethod |
|
|
47 |
# def get_intp_tensor(self, which=None): |
|
|
48 |
# """Returns a target tensor which is a scalar |
|
|
49 |
# w.r.t. to which to compute the outputs |
|
|
50 |
|
|
|
51 |
# Args: |
|
|
52 |
# which [string]: If None, use the default |
|
|
53 |
# **kwargs: optional kwargs for the interpretation method |
|
|
54 |
|
|
|
55 |
# Returns: |
|
|
56 |
# scalar tensor |
|
|
57 |
# """ |
|
|
58 |
# raise NotImplementedError |
|
|
59 |
|
|
|
60 |
def copy(self): |
|
|
61 |
from copy import deepcopy |
|
|
62 |
return deepcopy(self) |
|
|
63 |
|
|
|
64 |
|
|
|
65 |
class BaseHeadWBias(BaseHead): |
|
|
66 |
|
|
|
67 |
@abc.abstractmethod |
|
|
68 |
def get_bias_input(self, task): |
|
|
69 |
pass |
|
|
70 |
|
|
|
71 |
@abc.abstractmethod |
|
|
72 |
def neutral_bias_input(self, task, length, seqlen): |
|
|
73 |
pass |
|
|
74 |
|
|
|
75 |
|
|
|
76 |
def id_fn(x): |
|
|
77 |
return x |
|
|
78 |
|
|
|
79 |
|
|
|
80 |
def named_tensor(x, name): |
|
|
81 |
return kl.Lambda(id_fn, name=name)(x) |
|
|
82 |
|
|
|
83 |
|
|
|
84 |
# -------------------------------------------- |
|
|
85 |
# Head implementations |
|
|
86 |
|
|
|
87 |
@gin.configurable |
|
|
88 |
class ScalarHead(BaseHeadWBias): |
|
|
89 |
|
|
|
90 |
def __init__(self, target_name, # "{task}/scalar" |
|
|
91 |
net, # function that takes a keras tensor and returns a keras tensor |
|
|
92 |
activation=None, |
|
|
93 |
loss='mse', |
|
|
94 |
loss_weight=1, |
|
|
95 |
metric=RegressionMetrics(), |
|
|
96 |
postproc_fn=None, # post-processing to apply so that we are in the right scale |
|
|
97 |
# bias input |
|
|
98 |
use_bias=False, |
|
|
99 |
bias_net=None, |
|
|
100 |
bias_input='bias/{task}/scalar', |
|
|
101 |
bias_shape=(1,), |
|
|
102 |
): |
|
|
103 |
self.net = net |
|
|
104 |
self.loss = loss |
|
|
105 |
self.loss_weight = loss_weight |
|
|
106 |
self.metric = metric |
|
|
107 |
self.postproc_fn = postproc_fn |
|
|
108 |
self.target_name = target_name |
|
|
109 |
self.activation = activation |
|
|
110 |
self.bias_input = bias_input |
|
|
111 |
self.bias_net = bias_net |
|
|
112 |
self.use_bias = use_bias |
|
|
113 |
self.bias_shape = bias_shape |
|
|
114 |
|
|
|
115 |
def get_target(self, task): |
|
|
116 |
return self.target_name.format(task=task) |
|
|
117 |
|
|
|
118 |
def __call__(self, inp, task): |
|
|
119 |
o = self.net(inp) |
|
|
120 |
|
|
|
121 |
# remember the tensors useful for interpretation (referred by name) |
|
|
122 |
self.pre_act = o.name |
|
|
123 |
|
|
|
124 |
# add the target bias |
|
|
125 |
if self.use_bias: |
|
|
126 |
binp = kl.Input(self.bias_shape, name=self.get_bias_input(task)) |
|
|
127 |
bias_inputs = [binp] |
|
|
128 |
|
|
|
129 |
# add the bias term |
|
|
130 |
if self.bias_net is not None: |
|
|
131 |
bias_x = self.bias_net(binp) |
|
|
132 |
# This allows to normalize the bias data first |
|
|
133 |
# (e.g. when we have profile counts to aggregate it first) |
|
|
134 |
else: |
|
|
135 |
# Don't use the nn 'bias' so that when the measurement bias = 0, |
|
|
136 |
# this term vanishes |
|
|
137 |
bias_x = kl.Dense(1, use_bias=False)(binp) |
|
|
138 |
o = kl.add([o, bias_x]) |
|
|
139 |
else: |
|
|
140 |
bias_inputs = [] |
|
|
141 |
|
|
|
142 |
if self.activation is not None: |
|
|
143 |
if isinstance(self.activation, str): |
|
|
144 |
o = kl.Activation(self.activation)(o) |
|
|
145 |
else: |
|
|
146 |
o = self.activation(o) |
|
|
147 |
|
|
|
148 |
self.post_act = o.name |
|
|
149 |
|
|
|
150 |
# label the target op so that we can use a dictionary of targets |
|
|
151 |
# to train the model |
|
|
152 |
return named_tensor(o, name=self.get_target(task)), bias_inputs |
|
|
153 |
|
|
|
154 |
def get_preact_tensor(self, graph=None): |
|
|
155 |
if graph is None: |
|
|
156 |
graph = tf.get_default_graph() |
|
|
157 |
return graph.get_tensor_by_name(self.pre_act) |
|
|
158 |
|
|
|
159 |
def intp_tensors(self, preact_only=False, graph=None): |
|
|
160 |
"""Return the required interpretation tensors |
|
|
161 |
""" |
|
|
162 |
if graph is None: |
|
|
163 |
graph = tf.get_default_graph() |
|
|
164 |
|
|
|
165 |
if self.activation is None: |
|
|
166 |
# the post-activation doesn't |
|
|
167 |
# have any specific meaning when |
|
|
168 |
# we don't use any activation function |
|
|
169 |
return {"pre-act": graph.get_tensor_by_name(self.pre_act)} |
|
|
170 |
|
|
|
171 |
if preact_only: |
|
|
172 |
return {"pre-act": graph.get_tensor_by_name(self.pre_act)} |
|
|
173 |
else: |
|
|
174 |
return {"pre-act": graph.get_tensor_by_name(self.pre_act), |
|
|
175 |
"output": graph.get_tensor_by_name(self.post_act)} |
|
|
176 |
|
|
|
177 |
# def get_intp_tensor(self, which='pre-act'): |
|
|
178 |
# return self.intp_tensors()[which] |
|
|
179 |
|
|
|
180 |
def get_bias_input(self, task): |
|
|
181 |
return self.bias_input.format(task=task) |
|
|
182 |
|
|
|
183 |
def neutral_bias_input(self, task, length, seqlen): |
|
|
184 |
"""Create dummy bias input |
|
|
185 |
|
|
|
186 |
Return: (k, v) tuple |
|
|
187 |
""" |
|
|
188 |
shape = tuple([x if x is not None else seqlen |
|
|
189 |
for x in self.bias_shape]) |
|
|
190 |
return (self.get_bias_input(task), np.zeros((length, ) + shape)) |
|
|
191 |
|
|
|
192 |
|
|
|
193 |
@gin.configurable |
|
|
194 |
class BinaryClassificationHead(ScalarHead): |
|
|
195 |
|
|
|
196 |
def __init__(self, target_name, # "{task}/scalar" |
|
|
197 |
net, # function that takes a keras tensor and returns a keras tensor |
|
|
198 |
activation='sigmoid', |
|
|
199 |
loss='binary_crossentropy', |
|
|
200 |
loss_weight=1, |
|
|
201 |
metric=ClassificationMetrics(), |
|
|
202 |
postproc_fn=None, |
|
|
203 |
# bias input |
|
|
204 |
use_bias=False, |
|
|
205 |
bias_net=None, |
|
|
206 |
bias_input='bias/{task}/scalar', |
|
|
207 |
bias_shape=(1,), |
|
|
208 |
): |
|
|
209 |
# override the default |
|
|
210 |
super().__init__(target_name, |
|
|
211 |
net, |
|
|
212 |
activation=activation, |
|
|
213 |
loss=loss, |
|
|
214 |
metric=metric, |
|
|
215 |
postproc_fn=postproc_fn, |
|
|
216 |
use_bias=use_bias, |
|
|
217 |
bias_net=bias_net, |
|
|
218 |
bias_input=bias_input, |
|
|
219 |
bias_shape=bias_shape) |
|
|
220 |
|
|
|
221 |
# TODO - mabye override the way we call outputs? |
|
|
222 |
|
|
|
223 |
|
|
|
224 |
@gin.configurable |
|
|
225 |
class ProfileHead(BaseHeadWBias): |
|
|
226 |
"""Deals with the case where the output are multiple tracks of |
|
|
227 |
total shape (L, C) (L = sequence length, C = number of channels) |
|
|
228 |
|
|
|
229 |
Note: Since the contribution score will be a single scalar, the |
|
|
230 |
interpretation method will have to aggregate both across channels |
|
|
231 |
as well as positions |
|
|
232 |
""" |
|
|
233 |
|
|
|
234 |
def __init__(self, target_name, # "{task}/profile" |
|
|
235 |
net, # function that takes a keras tensor and returns a keras tensor |
|
|
236 |
activation=None, |
|
|
237 |
loss='mse', |
|
|
238 |
loss_weight=1, |
|
|
239 |
metric=RegressionMetrics(), |
|
|
240 |
postproc_fn=None, |
|
|
241 |
# bias input |
|
|
242 |
use_bias=False, |
|
|
243 |
bias_net=None, |
|
|
244 |
bias_input='bias/{task}/profile', |
|
|
245 |
bias_shape=(None, 1), |
|
|
246 |
): |
|
|
247 |
self.net = net |
|
|
248 |
self.loss = loss |
|
|
249 |
self.loss_weight = loss_weight |
|
|
250 |
self.metric = metric |
|
|
251 |
self.postproc_fn = postproc_fn |
|
|
252 |
self.target_name = target_name |
|
|
253 |
self.activation = activation |
|
|
254 |
self.bias_input = bias_input |
|
|
255 |
self.bias_net = bias_net |
|
|
256 |
self.use_bias = use_bias |
|
|
257 |
self.bias_shape = bias_shape |
|
|
258 |
|
|
|
259 |
def get_target(self, task): |
|
|
260 |
return self.target_name.format(task=task) |
|
|
261 |
|
|
|
262 |
def __call__(self, inp, task): |
|
|
263 |
o = self.net(inp) |
|
|
264 |
|
|
|
265 |
# remember the tensors useful for interpretation (referred by name) |
|
|
266 |
self.pre_act = o.name |
|
|
267 |
|
|
|
268 |
# add the target bias |
|
|
269 |
if self.use_bias: |
|
|
270 |
binp = kl.Input(self.bias_shape, name=self.get_bias_input(task)) |
|
|
271 |
bias_inputs = [binp] |
|
|
272 |
|
|
|
273 |
# add the bias term |
|
|
274 |
if self.bias_net is not None: |
|
|
275 |
bias_x = self.bias_net(binp) |
|
|
276 |
# This allows to normalize the bias data first |
|
|
277 |
# (e.g. when we have profile counts to aggregate it first) |
|
|
278 |
else: |
|
|
279 |
# Don't use the nn 'bias' so that when the measurement bias = 0, |
|
|
280 |
# this term vanishes |
|
|
281 |
bias_x = kl.Conv1D(1, kernel_size=1, use_bias=False)(binp) |
|
|
282 |
o = kl.add([o, bias_x]) |
|
|
283 |
else: |
|
|
284 |
bias_inputs = [] |
|
|
285 |
|
|
|
286 |
if self.activation is not None: |
|
|
287 |
if isinstance(self.activation, str): |
|
|
288 |
o = kl.Activation(self.activation)(o) |
|
|
289 |
else: |
|
|
290 |
o = self.activation(o) |
|
|
291 |
|
|
|
292 |
self.post_act = o.name |
|
|
293 |
|
|
|
294 |
# label the target op so that we can use a dictionary of targets |
|
|
295 |
# to train the model |
|
|
296 |
return named_tensor(o, name=self.get_target(task)), bias_inputs |
|
|
297 |
|
|
|
298 |
def get_preact_tensor(self, graph=None): |
|
|
299 |
if graph is None: |
|
|
300 |
graph = tf.get_default_graph() |
|
|
301 |
return graph.get_tensor_by_name(self.pre_act) |
|
|
302 |
|
|
|
303 |
@staticmethod |
|
|
304 |
def profile_contrib(p): |
|
|
305 |
"""Summarizing the profile for the contribution scores |
|
|
306 |
|
|
|
307 |
wn: Normalized contribution (weighted sum of the contribution scores) |
|
|
308 |
where the weighted sum uses softmax(p) to weight it |
|
|
309 |
w2: Simple sum (p**2) |
|
|
310 |
w1: sum(p) |
|
|
311 |
winf: max(p) |
|
|
312 |
""" |
|
|
313 |
# Note: unfortunately we have to use the kl.Lambda boiler-plate |
|
|
314 |
# to be able to do Model(inp, outputs) in deep-explain code |
|
|
315 |
|
|
|
316 |
# Normalized contribution - # TODO - update with tensorflow |
|
|
317 |
wn = kl.Lambda(lambda p: |
|
|
318 |
K.mean(K.sum(K.stop_gradient(tf.nn.softmax(p, dim=-2)) * p, axis=-2), axis=-1) |
|
|
319 |
)(p) |
|
|
320 |
|
|
|
321 |
# Squared weight |
|
|
322 |
w2 = kl.Lambda(lambda p: |
|
|
323 |
K.mean(K.sum(p * p, axis=-2), axis=-1) |
|
|
324 |
)(p) |
|
|
325 |
|
|
|
326 |
# W1 weight |
|
|
327 |
w1 = kl.Lambda(lambda preact_m: |
|
|
328 |
K.mean(K.sum(preact_m, axis=-2), axis=-1) |
|
|
329 |
)(p) |
|
|
330 |
|
|
|
331 |
# Winf |
|
|
332 |
# 1. max across the positional axis, average the strands |
|
|
333 |
winf = kl.Lambda(lambda p: |
|
|
334 |
K.mean(K.max(p, axis=-2), axis=-1) |
|
|
335 |
)(p) |
|
|
336 |
|
|
|
337 |
return {"wn": wn, |
|
|
338 |
"w1": w1, |
|
|
339 |
"w2": w2, |
|
|
340 |
"winf": winf |
|
|
341 |
} |
|
|
342 |
|
|
|
343 |
def intp_tensors(self, preact_only=False, graph=None): |
|
|
344 |
"""Return the required interpretation tensors (scalars) |
|
|
345 |
|
|
|
346 |
Note: Since we are predicting a track, |
|
|
347 |
we should return a single scalar here |
|
|
348 |
""" |
|
|
349 |
if graph is None: |
|
|
350 |
graph = tf.get_default_graph() |
|
|
351 |
|
|
|
352 |
preact = graph.get_tensor_by_name(self.pre_act) |
|
|
353 |
postact = graph.get_tensor_by_name(self.post_act) |
|
|
354 |
|
|
|
355 |
# Contruct the profile summary ops |
|
|
356 |
preact_tensors = self.profile_contrib(preact) |
|
|
357 |
postact_tensors = dict_prefix_key(self.profile_contrib(postact), 'output_') |
|
|
358 |
|
|
|
359 |
if self.activation is None: |
|
|
360 |
# the post-activation doesn't |
|
|
361 |
# have any specific meaning when |
|
|
362 |
# we don't use any activation function |
|
|
363 |
return preact_tensors |
|
|
364 |
|
|
|
365 |
if preact_only: |
|
|
366 |
return preact_tensors |
|
|
367 |
else: |
|
|
368 |
return {**preact_tensors, **postact_tensors} |
|
|
369 |
|
|
|
370 |
# def get_intp_tensor(self, which='wn'): |
|
|
371 |
# return self.intp_tensors()[which] |
|
|
372 |
|
|
|
373 |
def get_bias_input(self, task): |
|
|
374 |
return self.bias_input.format(task=task) |
|
|
375 |
|
|
|
376 |
def neutral_bias_input(self, task, length, seqlen): |
|
|
377 |
"""Create dummy bias input |
|
|
378 |
|
|
|
379 |
Return: (k, v) tuple |
|
|
380 |
""" |
|
|
381 |
shape = tuple([x if x is not None else seqlen |
|
|
382 |
for x in self.bias_shape]) |
|
|
383 |
return (self.get_bias_input(task), np.zeros((length, ) + shape)) |