Download this file

892 lines (891 with data), 23.4 kB

{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "56ecab01-a110-440f-a111-c132dd1fa26c",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "%load_ext autoreload\n",
    "%autoreload 2\n",
    "import sys\n",
    "sys.path.append(\"../../models/ss/\")\n",
    "import train"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3f7594c8-e7f0-4aaa-8d8e-4606b31d183f",
   "metadata": {},
   "source": [
    "# Dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "34110148-8ee5-44ec-9bee-0066f1620654",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " removed labels ssE|ssL|ssT|ssB\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "(411, 500, 21)"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data_filename = '../../data/raw_0/test.csv'\n",
    "use_labels=['ssH','ssG','ssI','ssS']\n",
    "data = train.load_data(data_filename,use_labels)#'ssI'\n",
    "data[0].shape"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7b258ae6-e493-41e9-8ccc-18d64ccd3cca",
   "metadata": {
    "tags": []
   },
   "source": [
    "# Model - Helix"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "7b73117e-fa24-46f7-8fc8-251f617d8ff6",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Hyper Parameters\n",
      "\n",
      "Learning Rate: 0.0001\n",
      "Dropout: 0.15\n",
      "Batch Dimension: 320\n",
      "Number of Epochs: 2000\n",
      "\n",
      "Loss: Custom Loss\n",
      "\n",
      "CNNModel(\n",
      "  (model): Sequential(\n",
      "    (0): Conv1d(21, 256, kernel_size=(21,), stride=(1,), padding=(10,))\n",
      "    (1): ReLU()\n",
      "    (2): Dropout(p=0.15, inplace=False)\n",
      "    (3): Conv1d(256, 128, kernel_size=(21,), stride=(1,), padding=(10,))\n",
      "    (4): ReLU()\n",
      "    (5): Dropout(p=0.15, inplace=False)\n",
      "    (6): Conv1d(128, 64, kernel_size=(21,), stride=(1,), padding=(10,))\n",
      "    (7): ReLU()\n",
      "    (8): Dropout(p=0.15, inplace=False)\n",
      "    (9): Conv1d(64, 4, kernel_size=(21,), stride=(1,), padding=(10,))\n",
      "  )\n",
      "  (activation): Sigmoid()\n",
      ")\n",
      "Epoch 0: Loss: 0.125625, Average Test Accuracy: 0.00%\n",
      "Epoch 100: Loss: 0.006360, Average Test Accuracy: 12.02%\n",
      "Epoch 200: Loss: 0.005251, Average Test Accuracy: 36.06%\n",
      "Epoch 300: Loss: 0.004695, Average Test Accuracy: 42.31%\n",
      "Epoch 400: Loss: 0.004553, Average Test Accuracy: 43.27%\n",
      "Epoch 500: Loss: 0.004176, Average Test Accuracy: 43.75%\n",
      "Epoch 600: Loss: 0.003515, Average Test Accuracy: 54.33%\n",
      "Epoch 700: Loss: 0.003549, Average Test Accuracy: 63.46%\n",
      "Epoch 800: Loss: 0.003311, Average Test Accuracy: 67.31%\n",
      "Epoch 900: Loss: 0.002835, Average Test Accuracy: 69.71%\n",
      "Epoch 1000: Loss: 0.002266, Average Test Accuracy: 70.67%\n",
      "Epoch 1100: Loss: 0.001848, Average Test Accuracy: 71.15%\n",
      "Epoch 1200: Loss: 0.001513, Average Test Accuracy: 71.63%\n",
      "Epoch 1300: Loss: 0.001247, Average Test Accuracy: 71.63%\n",
      "Epoch 1400: Loss: 0.001204, Average Test Accuracy: 72.12%\n",
      "Epoch 1500: Loss: 0.001046, Average Test Accuracy: 72.12%\n",
      "Epoch 1600: Loss: 0.000754, Average Test Accuracy: 72.12%\n",
      "Epoch 1700: Loss: 0.000724, Average Test Accuracy: 72.12%\n",
      "Epoch 1800: Loss: 0.000646, Average Test Accuracy: 72.12%\n",
      "Epoch 1900: Loss: 0.000452, Average Test Accuracy: 72.12%\n",
      "Complete.\n",
      "\n"
     ]
    }
   ],
   "source": [
    "import architecture as arch #PyTorch model\n",
    "dropout_probability = 0.15\n",
    "output_classes=len(use_labels)\n",
    "model = arch.CNNModel (input_channels=data[0].shape[-1], #pssm\n",
    "                       output_classes=output_classes, \n",
    "                       window_size=21,\n",
    "                       padding=10,\n",
    "                       dropout_probability=dropout_probability)\n",
    "train.nn_epochs = 2000\n",
    "train.epoch_eval =100\n",
    "\n",
    "train.run(data, model, tag='hlx')"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fa2f6fb5-8308-448a-ac41-2caea08f7ad0",
   "metadata": {},
   "source": [
    "# Model - Beta sheets"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 62,
   "id": "cc4bd5a7-21eb-4c75-83da-693bdf49b7b9",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " removed labels ssL|ssT|ssH|ssG|ssS|ssI\n"
     ]
    }
   ],
   "source": [
    "use_labels=['ssB','ssE']#'ssL']#\n",
    "data = train.load_data(data_filename,use_labels, only_pssm=True)\n",
    "output_classes= len(use_labels)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 63,
   "id": "c921771f-e180-4443-93fa-2e2b1764b697",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Hyper Parameters\n",
      "\n",
      "Learning Rate: 0.01\n",
      "Dropout: 0.1\n",
      "Batch Dimension: 3200\n",
      "Number of Epochs: 2000\n",
      "\n",
      "Loss: Custom Loss\n",
      "\n",
      "CNNModel(\n",
      "  (model): Sequential(\n",
      "    (0): Conv1d(21, 256, kernel_size=(11,), stride=(1,), padding=(5,))\n",
      "    (1): ReLU()\n",
      "    (2): Dropout(p=0.1, inplace=False)\n",
      "    (3): Conv1d(256, 128, kernel_size=(11,), stride=(1,), padding=(5,))\n",
      "    (4): ReLU()\n",
      "    (5): Dropout(p=0.1, inplace=False)\n",
      "    (6): Conv1d(128, 64, kernel_size=(11,), stride=(1,), padding=(5,))\n",
      "    (7): ReLU()\n",
      "    (8): Dropout(p=0.1, inplace=False)\n",
      "    (9): Conv1d(64, 2, kernel_size=(11,), stride=(1,), padding=(5,))\n",
      "  )\n",
      "  (activation): Sigmoid()\n",
      ")\n",
      "Epoch 0: Loss: 0.124714, Average Test Accuracy: 6.73%\n",
      "Epoch 100: Loss: 0.034316, Average Test Accuracy: 6.73%\n",
      "Epoch 200: Loss: 0.034316, Average Test Accuracy: 6.73%\n",
      "Epoch 300: Loss: 0.034316, Average Test Accuracy: 6.73%\n",
      "Epoch 400: Loss: 0.034316, Average Test Accuracy: 6.73%\n"
     ]
    },
    {
     "ename": "KeyboardInterrupt",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[63], line 13\u001b[0m\n\u001b[1;32m     11\u001b[0m train\u001b[38;5;241m.\u001b[39mbatch_dim \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m3200\u001b[39m\n\u001b[1;32m     12\u001b[0m train\u001b[38;5;241m.\u001b[39mLR \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0.01\u001b[39m\n\u001b[0;32m---> 13\u001b[0m \u001b[43mtrain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtag\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mbeta\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maccuracy_threshold\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0.5\u001b[39;49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/ReL/bpg/biophysics-protein-genomics/ProteinStructurePredictionCNN/experiments/experiment_1/../../models/train.py:81\u001b[0m, in \u001b[0;36mrun\u001b[0;34m(data, model, tag, accuracy_threshold)\u001b[0m\n\u001b[1;32m     79\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m inputs, targets \u001b[38;5;129;01min\u001b[39;00m train_loader:\n\u001b[1;32m     80\u001b[0m     optimizer\u001b[38;5;241m.\u001b[39mzero_grad()\n\u001b[0;32m---> 81\u001b[0m     inputs, targets \u001b[38;5;241m=\u001b[39m \u001b[43minputs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdevice\u001b[49m\u001b[43m)\u001b[49m, targets\u001b[38;5;241m.\u001b[39mto(device)\n\u001b[1;32m     82\u001b[0m     outputs \u001b[38;5;241m=\u001b[39m model(inputs)\n\u001b[1;32m     83\u001b[0m     loss \u001b[38;5;241m=\u001b[39m loss_fn2(outputs, targets)\n",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
     ]
    }
   ],
   "source": [
    "import architecture as arch #PyTorch model\n",
    "\n",
    "\n",
    "model = arch.CNNModel (input_channels=data[0].shape[-1], #pssm\n",
    "                       output_classes=output_classes,\n",
    "                       window_size=11,\n",
    "                       padding=5,\n",
    "                       dropout_probability=0.1)\n",
    "train.nn_epochs = 2000\n",
    "train.epoch_eval =100\n",
    "train.batch_dim = 3200\n",
    "train.LR = 0.01\n",
    "train.run(data, model, tag='beta', accuracy_threshold=0.5)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "03ffd6c6-9bff-4e7f-8228-25435114b803",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "956a5d7d-bfbd-4f79-b5b6-7a145e9a3b54",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "availableInstances": [
   {
    "_defaultOrder": 0,
    "_isFastLaunch": true,
    "category": "General purpose",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 4,
    "name": "ml.t3.medium",
    "vcpuNum": 2
   },
   {
    "_defaultOrder": 1,
    "_isFastLaunch": false,
    "category": "General purpose",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 8,
    "name": "ml.t3.large",
    "vcpuNum": 2
   },
   {
    "_defaultOrder": 2,
    "_isFastLaunch": false,
    "category": "General purpose",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 16,
    "name": "ml.t3.xlarge",
    "vcpuNum": 4
   },
   {
    "_defaultOrder": 3,
    "_isFastLaunch": false,
    "category": "General purpose",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 32,
    "name": "ml.t3.2xlarge",
    "vcpuNum": 8
   },
   {
    "_defaultOrder": 4,
    "_isFastLaunch": true,
    "category": "General purpose",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 8,
    "name": "ml.m5.large",
    "vcpuNum": 2
   },
   {
    "_defaultOrder": 5,
    "_isFastLaunch": false,
    "category": "General purpose",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 16,
    "name": "ml.m5.xlarge",
    "vcpuNum": 4
   },
   {
    "_defaultOrder": 6,
    "_isFastLaunch": false,
    "category": "General purpose",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 32,
    "name": "ml.m5.2xlarge",
    "vcpuNum": 8
   },
   {
    "_defaultOrder": 7,
    "_isFastLaunch": false,
    "category": "General purpose",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 64,
    "name": "ml.m5.4xlarge",
    "vcpuNum": 16
   },
   {
    "_defaultOrder": 8,
    "_isFastLaunch": false,
    "category": "General purpose",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 128,
    "name": "ml.m5.8xlarge",
    "vcpuNum": 32
   },
   {
    "_defaultOrder": 9,
    "_isFastLaunch": false,
    "category": "General purpose",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 192,
    "name": "ml.m5.12xlarge",
    "vcpuNum": 48
   },
   {
    "_defaultOrder": 10,
    "_isFastLaunch": false,
    "category": "General purpose",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 256,
    "name": "ml.m5.16xlarge",
    "vcpuNum": 64
   },
   {
    "_defaultOrder": 11,
    "_isFastLaunch": false,
    "category": "General purpose",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 384,
    "name": "ml.m5.24xlarge",
    "vcpuNum": 96
   },
   {
    "_defaultOrder": 12,
    "_isFastLaunch": false,
    "category": "General purpose",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 8,
    "name": "ml.m5d.large",
    "vcpuNum": 2
   },
   {
    "_defaultOrder": 13,
    "_isFastLaunch": false,
    "category": "General purpose",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 16,
    "name": "ml.m5d.xlarge",
    "vcpuNum": 4
   },
   {
    "_defaultOrder": 14,
    "_isFastLaunch": false,
    "category": "General purpose",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 32,
    "name": "ml.m5d.2xlarge",
    "vcpuNum": 8
   },
   {
    "_defaultOrder": 15,
    "_isFastLaunch": false,
    "category": "General purpose",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 64,
    "name": "ml.m5d.4xlarge",
    "vcpuNum": 16
   },
   {
    "_defaultOrder": 16,
    "_isFastLaunch": false,
    "category": "General purpose",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 128,
    "name": "ml.m5d.8xlarge",
    "vcpuNum": 32
   },
   {
    "_defaultOrder": 17,
    "_isFastLaunch": false,
    "category": "General purpose",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 192,
    "name": "ml.m5d.12xlarge",
    "vcpuNum": 48
   },
   {
    "_defaultOrder": 18,
    "_isFastLaunch": false,
    "category": "General purpose",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 256,
    "name": "ml.m5d.16xlarge",
    "vcpuNum": 64
   },
   {
    "_defaultOrder": 19,
    "_isFastLaunch": false,
    "category": "General purpose",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 384,
    "name": "ml.m5d.24xlarge",
    "vcpuNum": 96
   },
   {
    "_defaultOrder": 20,
    "_isFastLaunch": false,
    "category": "General purpose",
    "gpuNum": 0,
    "hideHardwareSpecs": true,
    "memoryGiB": 0,
    "name": "ml.geospatial.interactive",
    "supportedImageNames": [
     "sagemaker-geospatial-v1-0"
    ],
    "vcpuNum": 0
   },
   {
    "_defaultOrder": 21,
    "_isFastLaunch": true,
    "category": "Compute optimized",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 4,
    "name": "ml.c5.large",
    "vcpuNum": 2
   },
   {
    "_defaultOrder": 22,
    "_isFastLaunch": false,
    "category": "Compute optimized",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 8,
    "name": "ml.c5.xlarge",
    "vcpuNum": 4
   },
   {
    "_defaultOrder": 23,
    "_isFastLaunch": false,
    "category": "Compute optimized",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 16,
    "name": "ml.c5.2xlarge",
    "vcpuNum": 8
   },
   {
    "_defaultOrder": 24,
    "_isFastLaunch": false,
    "category": "Compute optimized",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 32,
    "name": "ml.c5.4xlarge",
    "vcpuNum": 16
   },
   {
    "_defaultOrder": 25,
    "_isFastLaunch": false,
    "category": "Compute optimized",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 72,
    "name": "ml.c5.9xlarge",
    "vcpuNum": 36
   },
   {
    "_defaultOrder": 26,
    "_isFastLaunch": false,
    "category": "Compute optimized",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 96,
    "name": "ml.c5.12xlarge",
    "vcpuNum": 48
   },
   {
    "_defaultOrder": 27,
    "_isFastLaunch": false,
    "category": "Compute optimized",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 144,
    "name": "ml.c5.18xlarge",
    "vcpuNum": 72
   },
   {
    "_defaultOrder": 28,
    "_isFastLaunch": false,
    "category": "Compute optimized",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 192,
    "name": "ml.c5.24xlarge",
    "vcpuNum": 96
   },
   {
    "_defaultOrder": 29,
    "_isFastLaunch": true,
    "category": "Accelerated computing",
    "gpuNum": 1,
    "hideHardwareSpecs": false,
    "memoryGiB": 16,
    "name": "ml.g4dn.xlarge",
    "vcpuNum": 4
   },
   {
    "_defaultOrder": 30,
    "_isFastLaunch": false,
    "category": "Accelerated computing",
    "gpuNum": 1,
    "hideHardwareSpecs": false,
    "memoryGiB": 32,
    "name": "ml.g4dn.2xlarge",
    "vcpuNum": 8
   },
   {
    "_defaultOrder": 31,
    "_isFastLaunch": false,
    "category": "Accelerated computing",
    "gpuNum": 1,
    "hideHardwareSpecs": false,
    "memoryGiB": 64,
    "name": "ml.g4dn.4xlarge",
    "vcpuNum": 16
   },
   {
    "_defaultOrder": 32,
    "_isFastLaunch": false,
    "category": "Accelerated computing",
    "gpuNum": 1,
    "hideHardwareSpecs": false,
    "memoryGiB": 128,
    "name": "ml.g4dn.8xlarge",
    "vcpuNum": 32
   },
   {
    "_defaultOrder": 33,
    "_isFastLaunch": false,
    "category": "Accelerated computing",
    "gpuNum": 4,
    "hideHardwareSpecs": false,
    "memoryGiB": 192,
    "name": "ml.g4dn.12xlarge",
    "vcpuNum": 48
   },
   {
    "_defaultOrder": 34,
    "_isFastLaunch": false,
    "category": "Accelerated computing",
    "gpuNum": 1,
    "hideHardwareSpecs": false,
    "memoryGiB": 256,
    "name": "ml.g4dn.16xlarge",
    "vcpuNum": 64
   },
   {
    "_defaultOrder": 35,
    "_isFastLaunch": false,
    "category": "Accelerated computing",
    "gpuNum": 1,
    "hideHardwareSpecs": false,
    "memoryGiB": 61,
    "name": "ml.p3.2xlarge",
    "vcpuNum": 8
   },
   {
    "_defaultOrder": 36,
    "_isFastLaunch": false,
    "category": "Accelerated computing",
    "gpuNum": 4,
    "hideHardwareSpecs": false,
    "memoryGiB": 244,
    "name": "ml.p3.8xlarge",
    "vcpuNum": 32
   },
   {
    "_defaultOrder": 37,
    "_isFastLaunch": false,
    "category": "Accelerated computing",
    "gpuNum": 8,
    "hideHardwareSpecs": false,
    "memoryGiB": 488,
    "name": "ml.p3.16xlarge",
    "vcpuNum": 64
   },
   {
    "_defaultOrder": 38,
    "_isFastLaunch": false,
    "category": "Accelerated computing",
    "gpuNum": 8,
    "hideHardwareSpecs": false,
    "memoryGiB": 768,
    "name": "ml.p3dn.24xlarge",
    "vcpuNum": 96
   },
   {
    "_defaultOrder": 39,
    "_isFastLaunch": false,
    "category": "Memory Optimized",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 16,
    "name": "ml.r5.large",
    "vcpuNum": 2
   },
   {
    "_defaultOrder": 40,
    "_isFastLaunch": false,
    "category": "Memory Optimized",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 32,
    "name": "ml.r5.xlarge",
    "vcpuNum": 4
   },
   {
    "_defaultOrder": 41,
    "_isFastLaunch": false,
    "category": "Memory Optimized",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 64,
    "name": "ml.r5.2xlarge",
    "vcpuNum": 8
   },
   {
    "_defaultOrder": 42,
    "_isFastLaunch": false,
    "category": "Memory Optimized",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 128,
    "name": "ml.r5.4xlarge",
    "vcpuNum": 16
   },
   {
    "_defaultOrder": 43,
    "_isFastLaunch": false,
    "category": "Memory Optimized",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 256,
    "name": "ml.r5.8xlarge",
    "vcpuNum": 32
   },
   {
    "_defaultOrder": 44,
    "_isFastLaunch": false,
    "category": "Memory Optimized",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 384,
    "name": "ml.r5.12xlarge",
    "vcpuNum": 48
   },
   {
    "_defaultOrder": 45,
    "_isFastLaunch": false,
    "category": "Memory Optimized",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 512,
    "name": "ml.r5.16xlarge",
    "vcpuNum": 64
   },
   {
    "_defaultOrder": 46,
    "_isFastLaunch": false,
    "category": "Memory Optimized",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 768,
    "name": "ml.r5.24xlarge",
    "vcpuNum": 96
   },
   {
    "_defaultOrder": 47,
    "_isFastLaunch": false,
    "category": "Accelerated computing",
    "gpuNum": 1,
    "hideHardwareSpecs": false,
    "memoryGiB": 16,
    "name": "ml.g5.xlarge",
    "vcpuNum": 4
   },
   {
    "_defaultOrder": 48,
    "_isFastLaunch": false,
    "category": "Accelerated computing",
    "gpuNum": 1,
    "hideHardwareSpecs": false,
    "memoryGiB": 32,
    "name": "ml.g5.2xlarge",
    "vcpuNum": 8
   },
   {
    "_defaultOrder": 49,
    "_isFastLaunch": false,
    "category": "Accelerated computing",
    "gpuNum": 1,
    "hideHardwareSpecs": false,
    "memoryGiB": 64,
    "name": "ml.g5.4xlarge",
    "vcpuNum": 16
   },
   {
    "_defaultOrder": 50,
    "_isFastLaunch": false,
    "category": "Accelerated computing",
    "gpuNum": 1,
    "hideHardwareSpecs": false,
    "memoryGiB": 128,
    "name": "ml.g5.8xlarge",
    "vcpuNum": 32
   },
   {
    "_defaultOrder": 51,
    "_isFastLaunch": false,
    "category": "Accelerated computing",
    "gpuNum": 1,
    "hideHardwareSpecs": false,
    "memoryGiB": 256,
    "name": "ml.g5.16xlarge",
    "vcpuNum": 64
   },
   {
    "_defaultOrder": 52,
    "_isFastLaunch": false,
    "category": "Accelerated computing",
    "gpuNum": 4,
    "hideHardwareSpecs": false,
    "memoryGiB": 192,
    "name": "ml.g5.12xlarge",
    "vcpuNum": 48
   },
   {
    "_defaultOrder": 53,
    "_isFastLaunch": false,
    "category": "Accelerated computing",
    "gpuNum": 4,
    "hideHardwareSpecs": false,
    "memoryGiB": 384,
    "name": "ml.g5.24xlarge",
    "vcpuNum": 96
   },
   {
    "_defaultOrder": 54,
    "_isFastLaunch": false,
    "category": "Accelerated computing",
    "gpuNum": 8,
    "hideHardwareSpecs": false,
    "memoryGiB": 768,
    "name": "ml.g5.48xlarge",
    "vcpuNum": 192
   },
   {
    "_defaultOrder": 55,
    "_isFastLaunch": false,
    "category": "Accelerated computing",
    "gpuNum": 8,
    "hideHardwareSpecs": false,
    "memoryGiB": 1152,
    "name": "ml.p4d.24xlarge",
    "vcpuNum": 96
   },
   {
    "_defaultOrder": 56,
    "_isFastLaunch": false,
    "category": "Accelerated computing",
    "gpuNum": 8,
    "hideHardwareSpecs": false,
    "memoryGiB": 1152,
    "name": "ml.p4de.24xlarge",
    "vcpuNum": 96
   },
   {
    "_defaultOrder": 57,
    "_isFastLaunch": false,
    "category": "Accelerated computing",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 32,
    "name": "ml.trn1.2xlarge",
    "vcpuNum": 8
   },
   {
    "_defaultOrder": 58,
    "_isFastLaunch": false,
    "category": "Accelerated computing",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 512,
    "name": "ml.trn1.32xlarge",
    "vcpuNum": 128
   },
   {
    "_defaultOrder": 59,
    "_isFastLaunch": false,
    "category": "Accelerated computing",
    "gpuNum": 0,
    "hideHardwareSpecs": false,
    "memoryGiB": 512,
    "name": "ml.trn1n.32xlarge",
    "vcpuNum": 128
   }
  ],
  "kernelspec": {
   "display_name": "Python 3 (PyTorch 2.0.0 Python 3.10 GPU Optimized)",
   "language": "python",
   "name": "python3__SAGEMAKER_INTERNAL__arn:aws:sagemaker:us-east-1:081325390199:image/pytorch-2.0.0-gpu-py310"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}