[f8624c]: / ai_genomics / getters / patents.py

Download this file

111 lines (90 with data), 3.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
from ai_genomics import bucket_name
from ai_genomics.getters.data_getters import load_s3_data
import pandas as pd
from typing import Mapping, Union
def get_ai_genomics_patents() -> pd.DataFrame:
"""From S3 loads dataframe of AI in genomics patents
with columns such as:
- application_number
- publication_number
- full list of cpc codes
- abstract_text
- publication_date
- inventor
- assignee
"""
return load_s3_data(
bucket_name,
"inputs/patent_data/processed_patent_data/ai_genomics_patents_cpc_codes.csv",
)
def get_ai_sample_patents() -> pd.DataFrame:
"""From S3 loads dataframe of a sample of AI patents (random 10%)
with columns such as:
- application_number
- publication_number
- full list of cpc codes
- abstract_text
- publication_date
- inventor
- assignee
"""
return load_s3_data(
bucket_name,
"inputs/patent_data/processed_patent_data/ai_sample_patents_cpc_codes.csv",
)
def get_genomics_sample_patents() -> pd.DataFrame:
"""From S3 loads dataframe of a sample of genomics patents (random 3%)
with columns such as:
- application_number
- publication_number
- full list of cpc codes
- abstract_text
- publication_date
- inventor
- assignee
"""
return load_s3_data(
bucket_name,
"inputs/patent_data/processed_patent_data/genomics_sample_patents_cpc_codes.csv",
)
def get_ai_genomics_cpc_codes() -> Mapping[str, Mapping[str, Union[str, str]]]:
"""From S3 loads AI in genomics cpc codes"""
return load_s3_data(
bucket_name, "outputs/patent_data/class_codes/cpc_with_definitions.json"
)
def get_ai_genomics_patents_entities() -> Mapping[str, Mapping[str, Union[str, str]]]:
"""From S3 loads AI in genomics patents entities"""
return load_s3_data(
bucket_name,
"outputs/entity_extraction/ai_genomics_patents_lookup_clean.json",
)
def get_ai_patents_entities() -> Mapping[str, Mapping[str, Union[str, str]]]:
"""From S3 loads AI patents entities"""
return load_s3_data(
bucket_name,
"outputs/entity_extraction/ai_patents_lookup_clean.json",
)
def get_genomics_patents_entities() -> Mapping[str, Mapping[str, Union[str, str]]]:
"""From S3 loads genomics patents entities"""
return load_s3_data(
bucket_name,
"outputs/entity_extraction/genomics_patents_lookup_clean.json",
)
def get_patent_ai_genomics_entity_groups(k: int = 500) -> pd.DataFrame:
"""Gets a dataframe of vectors representing the presence of DBpedia entity
clusters in each document.
Args:
k (int, optional): The number of clusters. Defaults to 500.
Returns:
pd.DataFrame: A sparse dataframe where the index is patent IDs and
the columns are vector dimensions (entity cluster IDs).
"""
fname = f"inputs/entities/patent_entity_group_vectors_k_{k}.csv"
return load_s3_data(bucket_name, fname)
def get_patent_ai_genomics_abstract_embeddings() -> pd.DataFrame:
"""Gets an array of abstract embeddings and the associated publication IDs.
Returns:
pd.DataFrame: Abstract embeddings and the associated publication IDs.
"""
fname = "inputs/embedding/pat_ai_genomics_embeddings.csv"
return load_s3_data(bucket_name, fname)