Download this file

102 lines (97 with data), 2.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
method:
id: paga
name: PAGA
tool_id: paga
source: tool
platform: Python
url: https://github.com/theislab/graph_abstraction
authors:
- given: Alexander
family: Wolf
email: alex.wolf@helmholtz-muenchen.de
github: falexwolf
ORCID: 0000-0002-8760-7838
- given: Fabian
family: Theis
email: fabian.theis@helmholtz-muenchen.de
github: theislab
wrapper:
type: branch_trajectory
topology_inference: free
trajectory_types:
- cycle
- linear
- bifurcation
- convergence
- multifurcation
- tree
- acyclic_graph
- graph
- disconnected_graph
input_required:
- counts
- start_id
input_optional:
- groups_id
container:
docker: dynverse/ti_paga
url: https://github.com/dynverse/ti_paga
manuscript:
doi: 10.1186/s13059-019-1663-x
google_scholar_cluster_id: '10470081259069082868'
preprint_date: '2017-10-27'
publication_date: '2019-03-19'
parameters:
- id: filter_features
description: Whether to do feature filtering
type: logical
default: yes
- id: n_neighbors
description: Number of neighbours for knn
type: integer
default: 15
distribution:
type: uniform
lower: 1
upper: 100
- id: n_comps
description: Number of principal components
type: integer
default: 50
distribution:
type: uniform
lower: 0
upper: 100
- id: n_dcs
description: Number of diffusion components for denoising graph, 0 means no denoising.
type: integer
default: 15
distribution:
type: uniform
lower: 0
upper: 40
- id: resolution
description: Resolution of louvain clustering, which determines the granularity
of the clustering. Higher values will result in more clusters.
type: numeric
default: 1
distribution:
type: uniform
lower: 0.1
upper: 10
- id: embedding_type
description: Either 'umap' (scales very well, recommended for very large datasets)
or 'fa' (ForceAtlas2, often a bit more intuitive for small datasets).
type: character
default: fa
values:
- umap
- fa
- id: connectivity_cutoff
description: Cutoff for the connectivity matrix
type: numeric
default: 0.05
distribution:
type: uniform
lower: 0
upper: 1