[2c6b19]: / docs / train.html

Download this file

191 lines (190 with data), 14.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1">
<meta name="generator" content="pdoc3 0.11.1">
<title>VITAE.train API documentation</title>
<meta name="description" content="">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/sanitize.min.css" integrity="sha512-y1dtMcuvtTMJc1yPgEqF0ZjQbhnc/bFhyvIyVNb9Zk5mIGtqVaAB1Ttl28su8AvFMOY0EwRbAe+HCLqj6W7/KA==" crossorigin>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/typography.min.css" integrity="sha512-Y1DYSb995BAfxobCkKepB1BqJJTPrOp3zPL74AWFugHHmmdcvO+C48WLrUOlhGMc0QG7AE3f7gmvvcrmX2fDoA==" crossorigin>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/styles/default.min.css" crossorigin>
<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:1.5em;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:2em 0 .50em 0}h3{font-size:1.4em;margin:1.6em 0 .7em 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .2s ease-in-out}a:visited{color:#503}a:hover{color:#b62}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900;font-weight:bold}pre code{font-size:.8em;line-height:1.4em;padding:1em;display:block}code{background:#f3f3f3;font-family:"DejaVu Sans Mono",monospace;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em 1em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul ul{padding-left:1em}.toc > ul > li{margin-top:.5em}}</style>
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
<script type="text/x-mathjax-config">MathJax.Hub.Config({ tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], processEscapes: true } });</script>
<script async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-AMS_CHTML" integrity="sha256-kZafAc6mZvK3W3v1pHOcUix30OHQN6pU/NO2oFkqZVw=" crossorigin></script>
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/highlight.min.js" integrity="sha512-D9gUyxqja7hBtkWpPWGt9wfbfaMGVt9gnyCvYa+jojwwPHLCzUm5i8rpk7vD7wNee9bA35eYIjobYPaQuKS1MQ==" crossorigin></script>
<script>window.addEventListener('DOMContentLoaded', () => {
hljs.configure({languages: ['bash', 'css', 'diff', 'graphql', 'ini', 'javascript', 'json', 'plaintext', 'python', 'python-repl', 'rust', 'shell', 'sql', 'typescript', 'xml', 'yaml']});
hljs.highlightAll();
})</script>
</head>
<body>
<main>
<article id="content">
<header>
<h1 class="title">Module <code>VITAE.train</code></h1>
</header>
<section id="section-intro">
</section>
<section>
</section>
<section>
</section>
<section>
<h2 class="section-title" id="header-functions">Functions</h2>
<dl>
<dt id="VITAE.train.clear_session"><code class="name flex">
<span>def <span class="ident">clear_session</span></span>(<span>)</span>
</code></dt>
<dd>
<div class="desc"><p>Clear Tensorflow sessions.</p></div>
</dd>
<dt id="VITAE.train.warp_dataset"><code class="name flex">
<span>def <span class="ident">warp_dataset</span></span>(<span>X_normalized, c_score, batch_size: int, X=None, scale_factor=None, conditions=None, pi_cov=None, seed=0)</span>
</code></dt>
<dd>
<div class="desc"><p>Get Tensorflow datasets.</p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>X_normalized</code></strong> :&ensp;<code>np.array</code></dt>
<dd><span><span class="MathJax_Preview">[N, G]</span><script type="math/tex">[N, G]</script></span> The preprocessed data.</dd>
<dt><strong><code>c_score</code></strong> :&ensp;<code>float</code>, optional</dt>
<dd>The normalizing constant.</dd>
<dt><strong><code>batch_size</code></strong> :&ensp;<code>int</code></dt>
<dd>The batch size.</dd>
<dt><strong><code>X</code></strong> :&ensp;<code>np.array</code>, optional</dt>
<dd><span><span class="MathJax_Preview">[N, G]</span><script type="math/tex">[N, G]</script></span> The raw count data.</dd>
<dt><strong><code>scale_factor</code></strong> :&ensp;<code>np.array</code>, optional</dt>
<dd><span><span class="MathJax_Preview">[N, ]</span><script type="math/tex">[N, ]</script></span> The raw count data.</dd>
<dt><strong><code>seed</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>The random seed for data shuffling.</dd>
<dt><strong><code>conditions</code></strong> :&ensp;<code>str</code> or <code>list</code>, optional</dt>
<dd>The conditions of different cells</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><strong><code>dataset</code></strong> :&ensp;<code>tf.Dataset</code></dt>
<dd>The Tensorflow Dataset object.</dd>
</dl></div>
</dd>
<dt id="VITAE.train.pre_train"><code class="name flex">
<span>def <span class="ident">pre_train</span></span>(<span>train_dataset, test_dataset, vae, learning_rate: float, L: int, alpha: float, gamma: float, phi: float, num_epoch: int, num_step_per_epoch: int, es_patience: int, es_tolerance: int, es_relative: bool, verbose: bool = True)</span>
</code></dt>
<dd>
<div class="desc"><p>Pretraining.</p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>train_dataset</code></strong> :&ensp;<code>tf.Dataset</code></dt>
<dd>The Tensorflow Dataset object.</dd>
<dt><strong><code>test_dataset</code></strong> :&ensp;<code>tf.Dataset</code></dt>
<dd>The Tensorflow Dataset object.</dd>
<dt><strong><code>vae</code></strong> :&ensp;<code>VariationalAutoEncoder</code></dt>
<dd>The model.</dd>
<dt><strong><code>learning_rate</code></strong> :&ensp;<code>float</code></dt>
<dd>The initial learning rate for the Adam optimizer.</dd>
<dt><strong><code>L</code></strong> :&ensp;<code>int</code></dt>
<dd>The number of MC samples.</dd>
<dt><strong><code>alpha</code></strong> :&ensp;<code>float</code>, optional</dt>
<dd>The value of alpha in [0,1] to encourage covariate adjustment. Not used if there is no covariates.</dd>
<dt><strong><code>phi</code></strong> :&ensp;<code>float</code>, optional</dt>
<dd>The weight of Jocob norm of the encoder.</dd>
<dt><strong><code>num_epoch</code></strong> :&ensp;<code>int</code></dt>
<dd>The maximum number of epoches.</dd>
<dt><strong><code>num_step_per_epoch</code></strong> :&ensp;<code>int</code></dt>
<dd>The number of step per epoch, it will be inferred from number of cells and batch size if it is None.</dd>
<dt><strong><code>es_patience</code></strong> :&ensp;<code>int</code></dt>
<dd>The maximum number of epoches if there is no improvement.</dd>
<dt><strong><code>es_tolerance</code></strong> :&ensp;<code>float</code></dt>
<dd>The minimum change of loss to be considered as an improvement.</dd>
<dt><strong><code>es_relative</code></strong> :&ensp;<code>bool</code>, optional</dt>
<dd>Whether monitor the relative change of loss or not.</dd>
<dt><strong><code>es_warmup</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>The number of warmup epoches.</dd>
<dt><strong><code>conditions</code></strong> :&ensp;<code>str</code> or <code>list</code></dt>
<dd>The conditions of different cells</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><strong><code>vae</code></strong> :&ensp;<code>VariationalAutoEncoder</code></dt>
<dd>The pretrained model.</dd>
</dl></div>
</dd>
<dt id="VITAE.train.train"><code class="name flex">
<span>def <span class="ident">train</span></span>(<span>train_dataset, test_dataset, vae, learning_rate: float, L: int, alpha: float, beta: float, gamma: float, phi: float, num_epoch: int, num_step_per_epoch: int, es_patience: int, es_tolerance: float, es_relative: bool, es_warmup: int, verbose: bool = False, pi_cov=None, **kwargs)</span>
</code></dt>
<dd>
<div class="desc"><p>Training.</p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>train_dataset</code></strong> :&ensp;<code>tf.Dataset</code></dt>
<dd>The Tensorflow Dataset object.</dd>
<dt><strong><code>test_dataset</code></strong> :&ensp;<code>tf.Dataset</code></dt>
<dd>The Tensorflow Dataset object.</dd>
<dt><strong><code>vae</code></strong> :&ensp;<code>VariationalAutoEncoder</code></dt>
<dd>The model.</dd>
<dt><strong><code>learning_rate</code></strong> :&ensp;<code>float</code></dt>
<dd>The initial learning rate for the Adam optimizer.</dd>
<dt><strong><code>L</code></strong> :&ensp;<code>int</code></dt>
<dd>The number of MC samples.</dd>
<dt><strong><code>alpha</code></strong> :&ensp;<code>float</code></dt>
<dd>The value of alpha in [0,1] to encourage covariate adjustment. Not used if there is no covariates.</dd>
<dt><strong><code>beta</code></strong> :&ensp;<code>float</code></dt>
<dd>The value of beta in beta-VAE.</dd>
<dt><strong><code>gamma</code></strong> :&ensp;<code>float</code></dt>
<dd>The weight of mmd_loss.</dd>
<dt><strong><code>phi</code></strong> :&ensp;<code>float</code></dt>
<dd>The weight of Jacob norm of the encoder.</dd>
<dt><strong><code>num_epoch</code></strong> :&ensp;<code>int</code></dt>
<dd>The maximum number of epoches.</dd>
<dt><strong><code>num_step_per_epoch</code></strong> :&ensp;<code>int</code></dt>
<dd>The number of step per epoch, it will be inferred from number of cells and batch size if it is None.</dd>
<dt><strong><code>es_patience</code></strong> :&ensp;<code>int</code></dt>
<dd>The maximum number of epoches if there is no improvement.</dd>
<dt><strong><code>es_tolerance</code></strong> :&ensp;<code>float</code>, optional</dt>
<dd>The minimum change of loss to be considered as an improvement.</dd>
<dt><strong><code>es_relative</code></strong> :&ensp;<code>bool</code>, optional</dt>
<dd>Whether monitor the relative change of loss or not.</dd>
<dt><strong><code>es_warmup</code></strong> :&ensp;<code>int</code></dt>
<dd>The number of warmup epoches.</dd>
<dt><strong><code>**kwargs</code></strong></dt>
<dd>Extra key-value arguments for dimension reduction algorithms.</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><strong><code>vae</code></strong> :&ensp;<code>VariationalAutoEncoder</code></dt>
<dd>The trained model.</dd>
</dl></div>
</dd>
</dl>
</section>
<section>
</section>
</article>
<nav id="sidebar">
<div class="toc">
<ul></ul>
</div>
<ul id="index">
<li><h3>Super-module</h3>
<ul>
<li><code><a title="VITAE" href="index.html">VITAE</a></code></li>
</ul>
</li>
<li><h3><a href="#header-functions">Functions</a></h3>
<ul class="">
<li><code><a title="VITAE.train.clear_session" href="#VITAE.train.clear_session">clear_session</a></code></li>
<li><code><a title="VITAE.train.warp_dataset" href="#VITAE.train.warp_dataset">warp_dataset</a></code></li>
<li><code><a title="VITAE.train.pre_train" href="#VITAE.train.pre_train">pre_train</a></code></li>
<li><code><a title="VITAE.train.train" href="#VITAE.train.train">train</a></code></li>
</ul>
</li>
</ul>
</nav>
</main>
<footer id="footer">
<p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.11.1</a>.</p>
</footer>
</body>
</html>