[2c6b19]: / docs / inference.html

Download this file

402 lines (374 with data), 23.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1">
<meta name="generator" content="pdoc3 0.11.1">
<title>VITAE.inference API documentation</title>
<meta name="description" content="">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/sanitize.min.css" integrity="sha512-y1dtMcuvtTMJc1yPgEqF0ZjQbhnc/bFhyvIyVNb9Zk5mIGtqVaAB1Ttl28su8AvFMOY0EwRbAe+HCLqj6W7/KA==" crossorigin>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/typography.min.css" integrity="sha512-Y1DYSb995BAfxobCkKepB1BqJJTPrOp3zPL74AWFugHHmmdcvO+C48WLrUOlhGMc0QG7AE3f7gmvvcrmX2fDoA==" crossorigin>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/styles/default.min.css" crossorigin>
<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:1.5em;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:2em 0 .50em 0}h3{font-size:1.4em;margin:1.6em 0 .7em 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .2s ease-in-out}a:visited{color:#503}a:hover{color:#b62}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900;font-weight:bold}pre code{font-size:.8em;line-height:1.4em;padding:1em;display:block}code{background:#f3f3f3;font-family:"DejaVu Sans Mono",monospace;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em 1em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul ul{padding-left:1em}.toc > ul > li{margin-top:.5em}}</style>
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
<script type="text/x-mathjax-config">MathJax.Hub.Config({ tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], processEscapes: true } });</script>
<script async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-AMS_CHTML" integrity="sha256-kZafAc6mZvK3W3v1pHOcUix30OHQN6pU/NO2oFkqZVw=" crossorigin></script>
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/highlight.min.js" integrity="sha512-D9gUyxqja7hBtkWpPWGt9wfbfaMGVt9gnyCvYa+jojwwPHLCzUm5i8rpk7vD7wNee9bA35eYIjobYPaQuKS1MQ==" crossorigin></script>
<script>window.addEventListener('DOMContentLoaded', () => {
hljs.configure({languages: ['bash', 'css', 'diff', 'graphql', 'ini', 'javascript', 'json', 'plaintext', 'python', 'python-repl', 'rust', 'shell', 'sql', 'typescript', 'xml', 'yaml']});
hljs.highlightAll();
})</script>
</head>
<body>
<main>
<article id="content">
<header>
<h1 class="title">Module <code>VITAE.inference</code></h1>
</header>
<section id="section-intro">
</section>
<section>
</section>
<section>
</section>
<section>
</section>
<section>
<h2 class="section-title" id="header-classes">Classes</h2>
<dl>
<dt id="VITAE.inference.Inferer"><code class="flex name class">
<span>class <span class="ident">Inferer</span></span>
<span>(</span><span>n_states: int)</span>
</code></dt>
<dd>
<div class="desc"><p>The class for doing inference based on posterior estimations.</p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>n_states</code></strong> :&ensp;<code>int</code></dt>
<dd>The number of vertices in the latent space.</dd>
</dl></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">class Inferer(object):
&#39;&#39;&#39;
The class for doing inference based on posterior estimations.
&#39;&#39;&#39;
def __init__(self, n_states: int):
&#39;&#39;&#39;
Parameters
----------
n_states : int
The number of vertices in the latent space.
&#39;&#39;&#39;
self.n_states = n_states
self.n_categories = int(n_states*(n_states+1)/2)
# self.A, self.B = np.nonzero(np.triu(np.ones(n_states)))
## indicator of the catagories
self.C = np.triu(np.ones(n_states))
self.C[self.C&gt;0] = np.arange(self.n_categories)
self.C = self.C.astype(int)
def build_graphs(self, w_tilde, pc_x, method: str = &#39;mean&#39;, thres: float = 0.5, no_loop: bool = False,
cutoff = 0):
&#39;&#39;&#39;Build the backbone.
Parameters
----------
pc_x : np.array
\([N, K]\) The estimated \(p(c_i|Y_i,X_i)\).
method : string, optional
&#39;mean&#39;, &#39;modified_mean&#39;, &#39;map&#39;, or &#39;modified_map&#39;.
thres : float, optional
The threshold used for filtering edges \(e_{ij}\) that \((n_{i}+n_{j}+e_{ij})/N&lt;thres\), only applied to mean method.
Retruns
----------
G : nx.Graph
The graph of edge scores.
&#39;&#39;&#39;
self.no_loop = no_loop
# self.w_tilde = w_tilde
graph = np.zeros((self.n_states,self.n_states))
if method==&#39;mean&#39;:
for i in range(self.n_states-1):
for j in range(i+1,self.n_states):
idx = np.sum(pc_x[:,self.C[[i,i,j],[i,j,j]]], axis=1)&gt;=thres
if np.sum(idx)&gt;0:
graph[i,j] = np.mean(pc_x[idx,self.C[i,j]]/np.sum(pc_x[idx][:,self.C[[i,i,j],[i,j,j]]], axis=-1))
elif method==&#39;modified_mean&#39;:
for i in range(self.n_states-1):
for j in range(i+1,self.n_states):
idx = np.sum(pc_x[:,self.C[[i,i,j],[i,j,j]]], axis=1)&gt;=thres
if np.sum(idx)&gt;0:
graph[i,j] = np.sum(pc_x[idx,self.C[i,j]])/np.sum(pc_x[idx][:,self.C[[i,i,j],[i,j,j]]])
elif method==&#39;map&#39;:
c = np.argmax(pc_x, axis=-1)
for i in range(self.n_states-1):
for j in range(i+1,self.n_states):
if np.sum(c==self.C[i,j])&gt;0:
graph[i,j] = np.sum(c==self.C[i,j])/np.sum((c==self.C[i,j])|(c==self.C[i,i])|(c==self.C[j,j]))
elif method==&#39;modified_map&#39;:
c = np.argmax(pc_x, axis=-1)
for i in range(self.n_states-1):
for j in range(i+1,self.n_states):
graph[i,j] = np.sum(c==self.C[i,j])/(np.sum((w_tilde[:,i]&gt;0.5)|(w_tilde[:,j]&gt;0.5))+1e-16)
elif method==&#39;raw_map&#39;:
c = np.argmax(pc_x, axis=-1)
for i in range(self.n_states-1):
for j in range(i+1,self.n_states):
if np.sum(c==self.C[i,j])&gt;0:
graph[i,j] = np.sum(c==self.C[i,j])/np.sum(np.isin(c, np.diagonal(self.C)) == False)
elif method == &#34;w_base&#34;:
for i in range(self.n_states):
for j in range(i+1,self.n_states):
two_vertice_max_w = w_tilde[(np.argmax(w_tilde, axis=1) == i) | (np.argmax(w_tilde, axis=1) == j),:]
num_two_vertice = two_vertice_max_w.shape[0]
if num_two_vertice &gt; 0:
graph[i, j] = np.sum(
np.abs(two_vertice_max_w[:, i] - two_vertice_max_w[:, j]) &lt; 0.1) / num_two_vertice
elif method == &#34;modified_w_base&#34;:
top2_idx = np.argpartition(w_tilde, -2, axis=1)[:, -2:]
for i in range(self.n_states):
for j in range(i + 1, self.n_states):
two_vertice_max_w = np.all(top2_idx == [i, j], axis=1) | np.all(top2_idx == [j, i], axis=1)
two_vertice_max_w = w_tilde[two_vertice_max_w, :]
vertice_count = w_tilde[(np.argmax(w_tilde, axis=1) == i) | (np.argmax(w_tilde, axis=1) == j), :]
vertice_count = vertice_count.shape[0]
if vertice_count &gt; 0:
edge_count = \
np.max((two_vertice_max_w[:, i], two_vertice_max_w[:, j]), axis=0) \
/ (two_vertice_max_w[:, i] + two_vertice_max_w[:, j])
edge_count = np.sum(edge_count &lt; 0.55)
graph[i, j] = edge_count / vertice_count
else:
raise ValueError(&#34;Invalid method, must be one of &#39;mean&#39;, &#39;modified_mean&#39;, &#39;map&#39;, &#39;modified_map&#39;,&#39;raw_map&#39;,&#39;w_base&#39;, and &#39;modified_w_base&#39;.&#34;)
graph[graph&lt;=cutoff] = 0
G = nx.from_numpy_array(graph)
if self.no_loop and not nx.is_tree(G):
# prune if there are no loops
G = nx.maximum_spanning_tree(G)
return G
def modify_wtilde(self, w_tilde, edges):
&#39;&#39;&#39;Project \(\\tilde{w}\) to the estimated backbone.
Parameters
----------
w_tilde : np.array
\([N, k]\) The estimated \(\\tilde{w}\).
edges : np.array
\([|\\mathcal{E}(\\widehat{\\mathcal{B}})|, 2]\).
Retruns
----------
w : np.array
The projected \(\\tilde{w}\).
&#39;&#39;&#39;
w = np.zeros_like(w_tilde)
# projection on nodes
best_proj_err_node = np.sum(w_tilde**2, axis=-1) - 2*np.max(w_tilde, axis=-1) +1
best_proj_err_node_ind = np.argmax(w_tilde, axis=-1)
if len(edges)&gt;0:
# projection on edges
idc = np.tile(np.arange(w.shape[0]), (2,1)).T
ide = edges[np.argmax(np.sum(w_tilde[:,edges], axis=-1)**2 -
4 * np.prod(w_tilde[:,edges], axis=-1) +
2 * np.sum(w_tilde[:,edges], axis=-1), axis=-1)]
w[idc, ide] = w_tilde[idc, ide] + (1-np.sum(w_tilde[idc, ide], axis=-1, keepdims=True))/2
best_proj_err_edge = np.sum(w_tilde**2, axis=-1) - np.sum(w_tilde[idc, ide]**2, axis=-1) + (1-np.sum(w_tilde[idc, ide], axis=-1))**2/2
idc = (best_proj_err_node&lt;best_proj_err_edge)
w[idc,:] = np.eye(w_tilde.shape[-1])[best_proj_err_node_ind[idc]]
else:
idc = np.arange(w.shape[0])
w[idc, best_proj_err_node_ind] = 1
return w
def build_milestone_net(self, subgraph, init_node: int):
&#39;&#39;&#39;Build the milestone network.
Parameters
----------
subgraph : nx.Graph
The connected component of the backbone given the root vertex.
init_node : int
The root vertex.
Returns
----------
df_subgraph : pd.DataFrame
The milestone network.
&#39;&#39;&#39;
if len(subgraph)==1:
warnings.warn(&#39;Singular node.&#39;)
return []
elif nx.is_directed_acyclic_graph(subgraph):
milestone_net = []
for edge in list(subgraph.edges):
if edge[0]==init_node:
dist = 1
elif edge[1]==init_node:
paths_0 = nx.all_simple_paths(subgraph, source=init_node, target=edge[0])
dist = - (np.max([len(p) for p in paths_1]) - 1)
else:
paths_0 = nx.all_simple_paths(subgraph, source=init_node, target=edge[0])
paths_1 = nx.all_simple_paths(subgraph, source=init_node, target=edge[1])
dist = np.max([len(p) for p in paths_1]) - np.max([len(p) for p in paths_0])
milestone_net.append([edge[0], edge[1], dist])
else:
# Dijkstra&#39;s Algorithm to find the shortest path
unvisited = {node: {&#39;parent&#39;:None,
&#39;score&#39;:np.inf,
&#39;distance&#39;:np.inf} for node in subgraph.nodes}
current = init_node
currentScore = 0
currentDistance = 0
unvisited[current][&#39;score&#39;] = currentScore
milestone_net = []
while True:
for neighbour in subgraph.neighbors(current):
if neighbour not in unvisited: continue
newScore = currentScore + subgraph[current][neighbour][&#39;weight&#39;]
if unvisited[neighbour][&#39;score&#39;] &gt; newScore:
unvisited[neighbour][&#39;score&#39;] = newScore
unvisited[neighbour][&#39;parent&#39;] = current
unvisited[neighbour][&#39;distance&#39;] = currentDistance+1
if len(unvisited)&lt;len(subgraph):
milestone_net.append([unvisited[current][&#39;parent&#39;],
current,
unvisited[current][&#39;distance&#39;]])
del unvisited[current]
if not unvisited: break
current, currentScore, currentDistance = \
sorted([(i[0],i[1][&#39;score&#39;],i[1][&#39;distance&#39;]) for i in unvisited.items()],
key = lambda x: x[1])[0]
return np.array(milestone_net)
def comp_pseudotime(self, milestone_net, init_node: int, w):
&#39;&#39;&#39;Compute pseudotime.
Parameters
----------
milestone_net : pd.DataFrame
The milestone network.
init_node : int
The root vertex.
w : np.array
\([N, k]\) The projected \(\\tilde{w}\).
Returns
----------
pseudotime : np.array
\([N, k]\) The estimated pseudtotime.
&#39;&#39;&#39;
pseudotime = np.empty(w.shape[0])
pseudotime.fill(np.nan)
pseudotime[w[:,init_node]==1] = 0
if len(milestone_net)&gt;0:
for i in range(len(milestone_net)):
_from, _to = milestone_net[i,:2]
_from, _to = int(_from), int(_to)
idc = ((w[:,_from]&gt;0)&amp;(w[:,_to]&gt;0)) | (w[:,_to]==1)
pseudotime[idc] = w[idc,_to] + milestone_net[i,-1] - 1
return pseudotime</code></pre>
</details>
<h3>Methods</h3>
<dl>
<dt id="VITAE.inference.Inferer.build_graphs"><code class="name flex">
<span>def <span class="ident">build_graphs</span></span>(<span>self, w_tilde, pc_x, method: str = 'mean', thres: float = 0.5, no_loop: bool = False, cutoff=0)</span>
</code></dt>
<dd>
<div class="desc"><p>Build the backbone.</p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>pc_x</code></strong> :&ensp;<code>np.array</code></dt>
<dd><span><span class="MathJax_Preview">[N, K]</span><script type="math/tex">[N, K]</script></span> The estimated <span><span class="MathJax_Preview">p(c_i|Y_i,X_i)</span><script type="math/tex">p(c_i|Y_i,X_i)</script></span>.</dd>
<dt><strong><code>method</code></strong> :&ensp;<code>string</code>, optional</dt>
<dd>'mean', 'modified_mean', 'map', or 'modified_map'.</dd>
<dt><strong><code>thres</code></strong> :&ensp;<code>float</code>, optional</dt>
<dd>The threshold used for filtering edges <span><span class="MathJax_Preview">e_{ij}</span><script type="math/tex">e_{ij}</script></span> that <span><span class="MathJax_Preview">(n_{i}+n_{j}+e_{ij})/N&lt;thres</span><script type="math/tex">(n_{i}+n_{j}+e_{ij})/N<thres</script></span>, only applied to mean method.</dd>
</dl>
<h2 id="retruns">Retruns</h2>
<p>G : nx.Graph
The graph of edge scores.</p></div>
</dd>
<dt id="VITAE.inference.Inferer.modify_wtilde"><code class="name flex">
<span>def <span class="ident">modify_wtilde</span></span>(<span>self, w_tilde, edges)</span>
</code></dt>
<dd>
<div class="desc"><p>Project <span><span class="MathJax_Preview">\tilde{w}</span><script type="math/tex">\tilde{w}</script></span> to the estimated backbone.</p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>w_tilde</code></strong> :&ensp;<code>np.array</code></dt>
<dd><span><span class="MathJax_Preview">[N, k]</span><script type="math/tex">[N, k]</script></span> The estimated <span><span class="MathJax_Preview">\tilde{w}</span><script type="math/tex">\tilde{w}</script></span>.</dd>
<dt><strong><code>edges</code></strong> :&ensp;<code>np.array</code></dt>
<dd><span><span class="MathJax_Preview">[|\mathcal{E}(\widehat{\mathcal{B}})|, 2]</span><script type="math/tex">[|\mathcal{E}(\widehat{\mathcal{B}})|, 2]</script></span>.</dd>
</dl>
<h2 id="retruns">Retruns</h2>
<p>w : np.array
The projected <span><span class="MathJax_Preview">\tilde{w}</span><script type="math/tex">\tilde{w}</script></span>.</p></div>
</dd>
<dt id="VITAE.inference.Inferer.build_milestone_net"><code class="name flex">
<span>def <span class="ident">build_milestone_net</span></span>(<span>self, subgraph, init_node: int)</span>
</code></dt>
<dd>
<div class="desc"><p>Build the milestone network.</p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>subgraph</code></strong> :&ensp;<code>nx.Graph</code></dt>
<dd>The connected component of the backbone given the root vertex.</dd>
<dt><strong><code>init_node</code></strong> :&ensp;<code>int</code></dt>
<dd>The root vertex.</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><strong><code>df_subgraph</code></strong> :&ensp;<code>pd.DataFrame </code></dt>
<dd>The milestone network.</dd>
</dl></div>
</dd>
<dt id="VITAE.inference.Inferer.comp_pseudotime"><code class="name flex">
<span>def <span class="ident">comp_pseudotime</span></span>(<span>self, milestone_net, init_node: int, w)</span>
</code></dt>
<dd>
<div class="desc"><p>Compute pseudotime.</p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>milestone_net</code></strong> :&ensp;<code>pd.DataFrame</code></dt>
<dd>The milestone network.</dd>
<dt><strong><code>init_node</code></strong> :&ensp;<code>int</code></dt>
<dd>The root vertex.</dd>
<dt><strong><code>w</code></strong> :&ensp;<code>np.array</code></dt>
<dd><span><span class="MathJax_Preview">[N, k]</span><script type="math/tex">[N, k]</script></span> The projected <span><span class="MathJax_Preview">\tilde{w}</span><script type="math/tex">\tilde{w}</script></span>.</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><strong><code>pseudotime</code></strong> :&ensp;<code>np.array</code></dt>
<dd><span><span class="MathJax_Preview">[N, k]</span><script type="math/tex">[N, k]</script></span> The estimated pseudtotime.</dd>
</dl></div>
</dd>
</dl>
</dd>
</dl>
</section>
</article>
<nav id="sidebar">
<div class="toc">
<ul></ul>
</div>
<ul id="index">
<li><h3>Super-module</h3>
<ul>
<li><code><a title="VITAE" href="index.html">VITAE</a></code></li>
</ul>
</li>
<li><h3><a href="#header-classes">Classes</a></h3>
<ul>
<li>
<h4><code><a title="VITAE.inference.Inferer" href="#VITAE.inference.Inferer">Inferer</a></code></h4>
<ul class="">
<li><code><a title="VITAE.inference.Inferer.build_graphs" href="#VITAE.inference.Inferer.build_graphs">build_graphs</a></code></li>
<li><code><a title="VITAE.inference.Inferer.modify_wtilde" href="#VITAE.inference.Inferer.modify_wtilde">modify_wtilde</a></code></li>
<li><code><a title="VITAE.inference.Inferer.build_milestone_net" href="#VITAE.inference.Inferer.build_milestone_net">build_milestone_net</a></code></li>
<li><code><a title="VITAE.inference.Inferer.comp_pseudotime" href="#VITAE.inference.Inferer.comp_pseudotime">comp_pseudotime</a></code></li>
</ul>
</li>
</ul>
</li>
</ul>
</nav>
</main>
<footer id="footer">
<p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.11.1</a>.</p>
</footer>
</body>
</html>