Download this file

182 lines (142 with data), 7.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import scanpy as sc
import numpy as np
import pandas as pd
import os
from scipy import sparse
import sys
import importlib
import VITAE
import seaborn
import random
import tensorflow as tf
## Preprocess datasets from "Molecular logic of cellular diversification in the mouse cerebral cortex"
## One can download the dataset and meta data through the URL:
## https://singlecell.broadinstitute.org/single_cell/study/SCP1290/molecular-logic-of-cellular-diversification-in-the-mammalian-cerebral-cortex
## transoform.h5ad file we used means data has been normalized to 10000 and done log(x+1) transformation.
###################################### Preprocess Di Bella's dataset #################################################
dd=sc.read("transform.h5ad")
metadata = pd.read_csv('metaData_scDevSC.txt', delimiter='\t', index_col = 0)
dd.obs['Day'] = metadata['orig_ident'][1:metadata.shape[0]]
dd.obs['Clusters'] = metadata['New_cellType'][1:metadata.shape[0]]
dd.obs['Clusters'] = pd.Categorical(dd.obs['Clusters'], categories = [
'Apical progenitors', 'Intermediate progenitors', 'Migrating neurons',
'Immature neurons', 'Cajal Retzius cells', 'CThPN', 'SCPN',
'NP', 'Layer 6b', 'Layer 4', 'DL CPN', 'DL_CPN_1', 'DL_CPN_2', 'UL CPN',
'Interneurons', 'Astrocytes', 'Oligodendrocytes', 'Microglia',
'Cycling glial cells', 'Ependymocytes', 'Endothelial cells',
'VLMC', 'Pericytes','Red blood cells', 'Doublet', 'Low quality cells'
], ordered = True)
dd.obs['S_Score'] = pd.to_numeric(metadata['S_Score'][1:metadata.shape[0]])
dd.obs['G2M_Score'] = pd.to_numeric(metadata['G2M_Score'][1:metadata.shape[0]])
dd = dd[dd.obs['Clusters'].isin(['Doublet', 'Low quality cells']) == False]
dd.obs.index=dd.obs.index.tolist()
dd.obs['Day']=dd.obs['Day'].tolist()
dd.obs['Clusters']=dd.obs['Clusters'].tolist()
dd.obs['S_Score']=dd.obs['S_Score'].tolist()
dd.obs['G2M_Score']=dd.obs['G2M_Score'].tolist()
sc.pp.highly_variable_genes(dd, flavor = "seurat")
sc.pp.scale(dd, max_value=10)
day18 = np.array([np.nan] * dd.shape[0]).astype(object)
day18[(dd.obs["Day"] == "E18").values] = "E18"
day18[(dd.obs["Day"] == "E18_S1").values] = "E18_S1"
day18[(dd.obs["Day"] == "E18_S3").values] = "E18_S3"
dd.obs["merge_day_18"] = day18
dayP1 = np.array([np.nan] * dd.shape[0]).astype(object)
dayP1[dd.obs["Day"] == "P1"] = "P1"
dayP1[dd.obs["Day"] == "P1_S1"] = "P1_S1"
dd.obs["merge_P1"] = dayP1
dd.obs["merge_day_18"] = dd.obs["merge_day_18"].astype("category")
dd.obs["merge_P1"] = dd.obs["merge_P1"].astype("category")
dd.obs["Source"] = "Di Bella"
###################################### Preprocess Yuzwa's and Ruan's merged dataset #################################################
mouse = load_data(path='data/',file_name="mouse_brain_merged")
sc.pp.normalize_total(mouse, target_sum=1e4)
sc.pp.log1p(mouse)
sc.pp.highly_variable_genes(mouse, min_mean=0.0125, max_mean=3, min_disp=0.5)
sc.pp.scale(mouse, max_value=10)
sc.tl.pca(mouse, n_comps = 64)
sc.pp.neighbors(mouse, n_neighbors = 20)
sc.tl.umap(mouse)
mouse_source = np.repeat("Yuzwa",mouse.shape[0])
mouse_source[mouse.obs["covariate_2"]==0] = "Ruan"
mouse.obs["Source"] = mouse_source
sc.pl.umap(mouse,color="Source",save = "_mouse_Source.pdf")
mouse_day = mouse.obs.index.values.copy()
mouse_day = [x[:3] for x in mouse_day]
mouse.obs["Day"] = mouse_day
mouse.obs.rename(columns={"grouping": "Clusters", "covariate_0": "S_Score",
"covariate_1":"G2M_Score"}, inplace = True)
###################################### Merge two datasets #################################################
dd = dd.concatenate(mouse,join="inner")
## define highly_variable in merged dataset
dd.var["highly_variable"] = dd.var["highly_variable-0"].astype(bool) | dd.var["highly_variable-1"].astype(bool)
## union different name of cell types in two datasets
group_dict = {"Immature Neuron" : "Immature neurons",
"NEC":"Apical progenitors",
"RGC":"Apical progenitors",
"Layer I":"Cajal Retzius cells",
"OPC":"Oligodendrocytes",
"Interneurons":"Interneurons",
"Endothelial Cell":"Endothelial cells",
"Microglia":"Microglia",
"Pericyte":"Pericytes",
"Intermediate progenitors":"IPC"}
c = dd.obs["Clusters"].values.copy()
c = [x if group_dict.get(x) == None else group_dict.get(x) for x in c]
dd.obs["tidy_clusters"] = c.copy()
## Add covariates for different source
a = np.zeros(dd.shape[0])
a[dd.obs["Source"] == "Ruan"] = 1
dd.obs["cov1"] = a
a = np.zeros(dd.shape[0])
a[dd.obs["Source"] == "Yuzwa"] = 1
dd.obs["cov2"] = a
a = np.zeros(dd.shape[0])
a[dd.obs["Source"] == "Di Bella"] = 1
dd.obs["cov3"] = a
a = np.array([np.nan] * dd.shape[0])
a[dd.obs["Day"] == "E18"] = 1
a[dd.obs["Day"] == "E18_S1"] = 2
a[dd.obs["Day"] == "E18_S3"] = 3
dd.obs["merge_18"] = a
a = np.array([np.nan] * dd.shape[0])
a[dd.obs["Day"] == "P1"] = 1
a[dd.obs["Day"] == "P1_S1"] = 2
dd.obs["merge_P1"] = a
dd.obs["merge_18"] = dd.obs["merge_18"].astype("category")
dd.obs["merge_P1"] = dd.obs["merge_P1"].astype("category")
a = np.array([np.nan] * dd.shape[0]).astype(object)
a[dd.obs["merge_P1"] == 1] = "P1"
a[dd.obs["merge_P1"] == 2] = "P1_S1"
dd.obs["merge_day_P1"] = a
a = dd.obs["tidy_clusters"].values.copy().astype(str)
a[(dd.obs["Day"].isin(["E14","E15","E16"])) & (a == "SCPN")] = "SCPN1"
dd.obs["Cluster2"] = a.copy()
###################################### Naive Merge #################################################
## See what happened if we directly merge them ##
dd.obs["Source"] = dd.obs["Source"].astype(pd.CategoricalDtype(
['Ruan', 'Yuzwa','Di Bella'], ordered=True))
sc.tl.pca(dd, n_comps = 64)
sc.pp.neighbors(dd, n_neighbors = 20)
sc.tl.umap(dd)
seaborn.set(rc={'figure.figsize':(6,6)},style = "white")
sc.pl.umap(dd,color="Source",save="_naive_Source.pdf",size = 5,palette= ["#F8766D","#00BFC4","#E5E8E8"],alpha = 0.5,na_color="#E5E8E8")
color_ggplot=["#F8766D","#E38900","#C49A00","#99A800","#53B400","#00BC56","#00C094","#00BFC4","#00B6EB","#06A4FF","#A58AFF","#DF70F8","#FB61D7","#FF66A8"]
seaborn.set(rc={'figure.figsize':(5,5)},style = "white")
sc.pl.umap(dd,color="Day",size = 2, alpha=0.4,palette=color_ggplot,save="_naive_merge_day.pdf")
###################################### Train VITAE #################################################
seed = 400
tf.keras.backend.clear_session()
random.seed(seed)
np.random.seed(seed)
tf.random.set_seed(seed)
model = VITAE.VITAE(adata = dd,
# adata_layer_counts = 'counts',
hidden_layers = [48, 24],
latent_space_dim = 16,
model_type = 'Gaussian',covariates = ['S_Score', 'G2M_Score',"cov1","cov2"],npc = 96)
model.pre_train(learning_rate = 1e-3,early_stopping_tolerance = 0.01, early_stopping_relative = True,L=1,phi=1,verbose=False,gamma = 1)
model.init_latent_space(cluster_label= 'Cluster2',ratio_prune=0.45)
model.train(beta = 1, learning_rate = 1e-3, early_stopping_tolerance = 0.01, early_stopping_relative = True,gamma=0,phi=1, verbose=False)
model.posterior_estimation(batch_size=32, L=10)
model.save_model(path_to_file="model.checkpoint")