Download this file

154 lines (126 with data), 3.6 kB

---
title: "my_slingshot"
author: "TianyuChen"
date: "2022/10/20"
output: html_document
---

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```

```{r}
se.integrated <- readRDS("seuract_batch_correction_cca.rds")
```

```{r}
raw_clusters <- se.integrated@meta.data[["Clusters"]]
```


```{r}
library(Seurat)
clusters <- se.integrated@meta.data[["Clusters"]]
days <- se.integrated@meta.data[["Days"]]
clusters[(clusters=="SCPN")&(days=="E14")]<- "SCPN1"
clusters[(clusters=="SCPN")&(days=="E15")]<- "SCPN1"
clusters[(clusters=="SCPN")&(days=="E16")]<- "SCPN1"
```

```{r}
count = se.integrated@assays$integrated@scale.data
count = count[,(clusters!= "Low quality cells") & (clusters!= "Doublet")]

umap <- se.integrated[['umap']][[]][,c(2,1)]
umap <- umap[(clusters!= "Low quality cells") & (clusters!= "Doublet"),]

clusters <- clusters[(clusters!= "Low quality cells") & (clusters!= "Doublet")]
```

```{r}
library(slingshot)
sim <- SingleCellExperiment(assays = list(counts = count), 
                            reducedDims = SimpleList(UMAP = data.matrix(umap)))
```

```{r}
colData(sim)$clusters <- clusters
```

```{r}
ptm <- proc.time()
sim <- slingshot(sim, 
                 clusterLabels = 'clusters', reducedDim = 'UMAP',
                 start.clus = "Apical progenitors",
                 stretch = 0
                 # approx_points = 100
                 )
proc.time() - ptm
```

```{r}
library(tidyverse)
library(dplyr)
library(dyno)
library(purrr)
labels <- data.frame(colData(sim)$clusters)
rownames(labels) <- colnames(se.integrated)[(raw_clusters!= "Low quality cells") & (raw_clusters!= "Doublet")]
start_cell <- apply(slingshot::slingPseudotime(sim), 1, min) %>% sort() %>% head(1) %>% names()
start.clus <- labels[[start_cell]]
# satisfy r cmd check
from <- to <- NULL
```

```{r}
# collect milestone network
lineages <- slingLineages(sim)
lineage_ctrl <- slingParams(sim)
cluster_network <- lineages %>%
    map_df(~ tibble(from = .[-length(.)], to = .[-1])) %>%
    unique() %>%
    mutate(
        length = lineage_ctrl$dist[cbind(from, to)],
        directed = TRUE
    )
cluster_network$length <- 1

```

```{r}
# collect dimred
dimred <- reducedDim(sim)

# collect clusters
cluster <- slingClusterLabels(sim)

# collect progressions
#adj <- slingAdjacency(sim)
lin_assign <- apply(slingCurveWeights(sim), 1, which.max)

progressions <- map_df(seq_along(lineages), function(l) {
    ind <- lin_assign == l
    lin <- lineages[[l]]
    pst.full <- slingPseudotime(sim, na = FALSE)[,l]
    pst <- pst.full[ind]
    means <- sapply(lin, function(clID){
        stats::weighted.mean(pst.full, cluster[,clID])
    })
    non_ends <- means[-c(1,length(means))]
    edgeID.l <- as.numeric(cut(pst, breaks = c(-Inf, non_ends, Inf)))
    from.l <- lineages[[l]][edgeID.l]
    to.l <- lineages[[l]][edgeID.l + 1]
    m.from <- means[from.l]
    m.to <- means[to.l]
    
    pct <- (pst - m.from) / (m.to - m.from)
    pct[pct < 0] <- 0
    pct[pct > 1] <- 1
    
    tibble(cell_id = names(which(ind)), from = from.l, to = to.l, percentage = pct)
})
```

```{r}
trajectory <-
    dynwrap::wrap_data(
        cell_ids = rownames(labels)
    ) %>%
    dynwrap::add_trajectory(
        milestone_network = cluster_network,
        progressions = progressions
    ) %>%
    dynwrap::add_dimred(
        dimred = dimred
    )
pseudotime <- calculate_pseudotime(trajectory)

```
```{r}
write.csv(cluster_network, "Slingshot_cluster_network.csv")
```
```{r}
write.csv(cbind(umap, clusters), "Seurat_clustering.csv")
```

# get color code

```{r}
library(scales)
hue_pal()(29)
```