[2c6b19]: / docs / preprocess.html

Download this file

689 lines (621 with data), 33.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />
<meta name="generator" content="pdoc 0.8.1" />
<title>VITAE.preprocess API documentation</title>
<meta name="description" content="" />
<link href='https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.0/normalize.min.css' rel='stylesheet'>
<link href='https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/8.0.0/sanitize.min.css' rel='stylesheet'>
<link href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css" rel="stylesheet">
<style>.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}.admonition{padding:.1em .5em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style>
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
<script async src='https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS_CHTML'></script>
</head>
<body>
<main>
<article id="content">
<header>
<h1 class="title">Module <code>VITAE.preprocess</code></h1>
</header>
<section id="section-intro">
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python"># -*- coding: utf-8 -*-
from typing import Optional
import numpy as np
import pandas as pd
from skmisc import loess
from sklearn import preprocessing
import warnings
from sklearn.decomposition import PCA
from VITAE.utils import _check_expression, _check_variability
def normalize_gene_expression(x, K : float = 1e4, transform_fn : str = &#39;log&#39;):
&#39;&#39;&#39;Normalize the gene expression counts for each cell by the total expression counts,
divide this by a size scale factor, which is determined by total counts and a constant K
then log-transforms the result.
Parameters
----------
x : np.array
\([N, G^{raw}]\) The raw count data.
K : float, optional
The normalizing constant.
transform_fn : str, optional
Either &#39;log&#39; or &#39;sqrt&#39;.
Returns
----------
x_normalized : np.array
\([N, G^{raw}]\) The log-normalized data.
scale_factor : np.array
\([N, ]\) The scale factors.
&#39;&#39;&#39;
scale_factor = np.sum(x,axis=1, keepdims=True)/K
if transform_fn==&#39;log&#39;:
x_normalized = np.log(x/scale_factor + 1)
else:
x_normalized = np.where(x&gt;0, np.sqrt(x/scale_factor), 0)
print(&#39;min normalized value: &#39; + str(np.min(x_normalized)))
print(&#39;max normalized value: &#39; + str(np.max(x_normalized)))
return x_normalized, scale_factor
def feature_select(x, gene_num : int = 2000):
&#39;&#39;&#39;Select highly variable genes (HVGs)
(See [Stuart *et al*, (2019)](https://www.nature.com/articles/nbt.4096) and its early version [preprint](https://www.biorxiv.org/content/10.1101/460147v1.full.pdf)
Page 12-13: Data preprocessing - Feature selection for individual datasets).
Parameters
----------
x : np.array
\([N, G^{raw}]\) The raw count data.
gene_num : int, optional
The number of genes to retain.
Returns
----------
x : np.array
\([N, G]\) The count data after gene selection.
index : np.array
\([G, ]\) The selected index of genes.
&#39;&#39;&#39;
n, p = x.shape
# mean and variance of each gene of the unnormalized data
mean, var = np.mean(x, axis=0), np.var(x, axis=0, ddof=1)
# model log10(var)~log10(mean) by local fitting of polynomials of degree 2
loess_model = loess.loess(np.log10(mean), np.log10(var),
span = 0.3, degree = 2, family=&#39;gaussian&#39;
)
loess_model.fit()
fitted = loess_model.outputs.fitted_values
# standardized feature
z = (x - mean)/np.sqrt(10**fitted)
# clipped the standardized features to remove outliers
z = np.clip(z, -np.inf, np.sqrt(n))
# the variance of standardized features across all cells represents a measure of
# single cell dispersion after controlling for mean expression
feature_score = np.sum(z**2, axis=0)/(n-1)
# feature selection
index = feature_score.argsort()[::-1][0:gene_num]
return x[:, index], index
def preprocess(adata = None, processed: bool = False, dimred: bool = False,
x = None, c = None, label_names = None, raw_cell_names = None, raw_gene_names = None,
K: float = 1e4, transform_fn: str = &#39;log&#39;, gene_num: int = 2000, data_type: str = &#39;UMI&#39;,
npc: int = 64, random_state=0):
&#39;&#39;&#39;Preprocess count data.
Parameters
----------
adata : AnnData, optional
The scanpy object.
processed : boolean
Whether adata has been processed.
dimred : boolean
Whether the processed adata is after dimension reduction.
x : np.array, optional
\([N^{raw}, G^{raw}]\) The raw count matrix.
c : np.array
\([N^{raw}, s]\) The covariate matrix.
label_names : np.array
\([N^{raw}, ]\) The true or estimated cell types.
raw_cell_names : np.array
\([N^{raw}, ]\) The names of cells.
raw_gene_names : np.array
\([G^{raw}, ]\) The names of genes.
K : int, optional
The normalizing constant.
transform_fn : str
The transform function used to normalize the gene expression after scaling. Either &#39;log&#39; or &#39;sqrt&#39;.
gene_num : int, optional
The number of genes to retain.
data_type : str, optional
&#39;UMI&#39;, &#39;non-UMI&#39;, or &#39;Gaussian&#39;.
npc : int, optional
The number of PCs to retain, only used if `data_type=&#39;Gaussian&#39;`.
random_state : int, optional
The random state for PCA. With different random states, the resulted PCA scores are slightly different.
Returns
----------
x_normalized : np.array
\([N, G]\) The preprocessed matrix.
expression : np.array
\([N, G^{raw}]\) The expression matrix after log-normalization and before scaling.
x : np.array
\([N, G]\) The raw count matrix after gene selections.
c : np.array
\([N, s]\) The covariates.
cell_names : np.array
\([N, ]\) The cell names.
gene_names : np.array
\([G^{raw}, ]\) The gene names.
selected_gene_names :
\([G, ]\) The selected gene names.
scale_factor :
\([N, ]\) The scale factors.
labels : np.array
\([N, ]\) The encoded labels.
label_names : np.array
\([N, ]\) The label names.
le : sklearn.preprocessing.LabelEncoder
The label encoder.
gene_scalar : sklearn.preprocessing.StandardScaler
The gene scaler.
&#39;&#39;&#39;
# if input is a scanpy data
if adata is not None:
import scanpy as sc
# if the input scanpy is processed
if processed:
x_normalized = x = adata.X
gene_names = adata.var_names.values
expression = None
scale_factor = np.ones(x.shape[0])
# if the input scanpy is not processed
else:
dimred = False
x = adata.X.copy()
adata, expression, gene_names, cell_mask, gene_mask, gene_mask2 = _recipe_seurat(adata, gene_num)
x_normalized = adata.X.copy()
scale_factor = adata.obs.counts_per_cell.values / 1e4
x = x[cell_mask,:][:,gene_mask][:,gene_mask2]
if label_names is None:
try:
label_names = adata.obs.cell_types
except:
if label_names is not None and processed is False:
label_names = label_names[cell_mask]
cell_names = adata.obs_names.values
selected_gene_names = adata.var_names.values
gene_scalar = None
# if input is a count matrix
else:
# remove cells that have no expression
expressed = _check_expression(x)
print(&#39;Removing %d cells without expression.&#39;%(np.sum(expressed==0)))
x = x[expressed==1,:]
if c is not None:
c = c[expressed==1,:]
if label_names is not None:
label_names = label_names[expressed==1]
# remove genes without variability
variable = _check_variability(x)
print(&#39;Removing %d genes without variability.&#39;%(np.sum(variable==0)))
x = x[:, variable==1]
gene_names = raw_gene_names[variable==1]
# log-normalization
expression, scale_factor = normalize_gene_expression(x, K, transform_fn)
# feature selection
x, index = feature_select(x, gene_num)
selected_expression = expression[:, index]
# per-gene standardization
gene_scalar = preprocessing.StandardScaler()
x_normalized = gene_scalar.fit_transform(selected_expression)
cell_names = raw_cell_names[expressed==1]
selected_gene_names = gene_names[index]
if (data_type==&#39;Gaussian&#39;) and (dimred is False):
# use arpack solver and extend precision to get deterministic result
pca = PCA(n_components = npc, random_state=random_state, svd_solver=&#39;arpack&#39;)
x_normalized = x = pca.fit_transform(x_normalized.astype(np.float64)).astype(np.float32)
if c is not None:
c_scalar = preprocessing.StandardScaler()
c = c_scalar.fit_transform(c)
if label_names is None:
warnings.warn(&#39;No labels for cells!&#39;)
labels = None
le = None
else:
le = preprocessing.LabelEncoder()
labels = le.fit_transform(label_names)
print(&#39;Number of cells in each class: &#39;)
table = pd.value_counts(label_names)
table.index = pd.Series(le.transform(table.index).astype(str)) \
+ &#39; &lt;---&gt; &#39; + table.index
table = table.sort_index()
print(table)
return (x_normalized, expression, x, c,
cell_names, gene_names, selected_gene_names,
scale_factor, labels, label_names, le, gene_scalar)
def _recipe_seurat(adata, gene_num):
&#34;&#34;&#34;
Normalization and filtering as of Seurat [Satija15]_.
This uses a particular preprocessing
&#34;&#34;&#34;
import scanpy as sc
cell_mask = sc.pp.filter_cells(adata, min_genes=200, inplace=False)[0]
adata = adata[cell_mask,:]
gene_mask = sc.pp.filter_genes(adata, min_cells=3, inplace=False)[0]
adata = adata[:,gene_mask]
gene_names = adata.var_names.values
sc.pp.normalize_total(adata, target_sum=1e4, key_added=&#39;counts_per_cell&#39;)
filter_result = sc.pp.filter_genes_dispersion(
adata.X, min_mean=0.0125, max_mean=3, min_disp=0.5, log=False, n_top_genes=gene_num)
sc.pp.log1p(adata)
expression = adata.X.copy()
adata._inplace_subset_var(filter_result.gene_subset) # filter genes
sc.pp.scale(adata, max_value=10)
return adata, expression, gene_names, cell_mask, gene_mask, filter_result.gene_subset</code></pre>
</details>
</section>
<section>
</section>
<section>
</section>
<section>
<h2 class="section-title" id="header-functions">Functions</h2>
<dl>
<dt id="VITAE.preprocess.normalize_gene_expression"><code class="name flex">
<span>def <span class="ident">normalize_gene_expression</span></span>(<span>x, K: float = 10000.0, transform_fn: str = 'log')</span>
</code></dt>
<dd>
<div class="desc"><p>Normalize the gene expression counts for each cell by the total expression counts,
divide this by a size scale factor, which is determined by total counts and a constant K
then log-transforms the result.</p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>x</code></strong> :&ensp;<code>np.array</code></dt>
<dd><span><span class="MathJax_Preview">[N, G^{raw}]</span><script type="math/tex">[N, G^{raw}]</script></span> The raw count data.</dd>
<dt><strong><code>K</code></strong> :&ensp;<code>float</code>, optional</dt>
<dd>The normalizing constant.</dd>
<dt><strong><code>transform_fn</code></strong> :&ensp;<code>str</code>, optional</dt>
<dd>Either 'log' or 'sqrt'.</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><strong><code>x_normalized</code></strong> :&ensp;<code>np.array</code></dt>
<dd><span><span class="MathJax_Preview">[N, G^{raw}]</span><script type="math/tex">[N, G^{raw}]</script></span> The log-normalized data.</dd>
<dt><strong><code>scale_factor</code></strong> :&ensp;<code>np.array</code></dt>
<dd><span><span class="MathJax_Preview">[N, ]</span><script type="math/tex">[N, ]</script></span> The scale factors.</dd>
</dl></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def normalize_gene_expression(x, K : float = 1e4, transform_fn : str = &#39;log&#39;):
&#39;&#39;&#39;Normalize the gene expression counts for each cell by the total expression counts,
divide this by a size scale factor, which is determined by total counts and a constant K
then log-transforms the result.
Parameters
----------
x : np.array
\([N, G^{raw}]\) The raw count data.
K : float, optional
The normalizing constant.
transform_fn : str, optional
Either &#39;log&#39; or &#39;sqrt&#39;.
Returns
----------
x_normalized : np.array
\([N, G^{raw}]\) The log-normalized data.
scale_factor : np.array
\([N, ]\) The scale factors.
&#39;&#39;&#39;
scale_factor = np.sum(x,axis=1, keepdims=True)/K
if transform_fn==&#39;log&#39;:
x_normalized = np.log(x/scale_factor + 1)
else:
x_normalized = np.where(x&gt;0, np.sqrt(x/scale_factor), 0)
print(&#39;min normalized value: &#39; + str(np.min(x_normalized)))
print(&#39;max normalized value: &#39; + str(np.max(x_normalized)))
return x_normalized, scale_factor</code></pre>
</details>
</dd>
<dt id="VITAE.preprocess.feature_select"><code class="name flex">
<span>def <span class="ident">feature_select</span></span>(<span>x, gene_num: int = 2000)</span>
</code></dt>
<dd>
<div class="desc"><p>Select highly variable genes (HVGs)
(See <a href="https://www.nature.com/articles/nbt.4096">Stuart <em>et al</em>, (2019)</a> and its early version <a href="https://www.biorxiv.org/content/10.1101/460147v1.full.pdf">preprint</a>
Page 12-13: Data preprocessing - Feature selection for individual datasets).</p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>x</code></strong> :&ensp;<code>np.array</code></dt>
<dd><span><span class="MathJax_Preview">[N, G^{raw}]</span><script type="math/tex">[N, G^{raw}]</script></span> The raw count data.</dd>
<dt><strong><code>gene_num</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>The number of genes to retain.</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><strong><code>x</code></strong> :&ensp;<code>np.array</code></dt>
<dd><span><span class="MathJax_Preview">[N, G]</span><script type="math/tex">[N, G]</script></span> The count data after gene selection.</dd>
<dt><strong><code>index</code></strong> :&ensp;<code>np.array</code></dt>
<dd><span><span class="MathJax_Preview">[G, ]</span><script type="math/tex">[G, ]</script></span> The selected index of genes.</dd>
</dl></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def feature_select(x, gene_num : int = 2000):
&#39;&#39;&#39;Select highly variable genes (HVGs)
(See [Stuart *et al*, (2019)](https://www.nature.com/articles/nbt.4096) and its early version [preprint](https://www.biorxiv.org/content/10.1101/460147v1.full.pdf)
Page 12-13: Data preprocessing - Feature selection for individual datasets).
Parameters
----------
x : np.array
\([N, G^{raw}]\) The raw count data.
gene_num : int, optional
The number of genes to retain.
Returns
----------
x : np.array
\([N, G]\) The count data after gene selection.
index : np.array
\([G, ]\) The selected index of genes.
&#39;&#39;&#39;
n, p = x.shape
# mean and variance of each gene of the unnormalized data
mean, var = np.mean(x, axis=0), np.var(x, axis=0, ddof=1)
# model log10(var)~log10(mean) by local fitting of polynomials of degree 2
loess_model = loess.loess(np.log10(mean), np.log10(var),
span = 0.3, degree = 2, family=&#39;gaussian&#39;
)
loess_model.fit()
fitted = loess_model.outputs.fitted_values
# standardized feature
z = (x - mean)/np.sqrt(10**fitted)
# clipped the standardized features to remove outliers
z = np.clip(z, -np.inf, np.sqrt(n))
# the variance of standardized features across all cells represents a measure of
# single cell dispersion after controlling for mean expression
feature_score = np.sum(z**2, axis=0)/(n-1)
# feature selection
index = feature_score.argsort()[::-1][0:gene_num]
return x[:, index], index</code></pre>
</details>
</dd>
<dt id="VITAE.preprocess.preprocess"><code class="name flex">
<span>def <span class="ident">preprocess</span></span>(<span>adata=None, processed: bool = False, dimred: bool = False, x=None, c=None, label_names=None, raw_cell_names=None, raw_gene_names=None, K: float = 10000.0, transform_fn: str = 'log', gene_num: int = 2000, data_type: str = 'UMI', npc: int = 64, random_state=0)</span>
</code></dt>
<dd>
<div class="desc"><p>Preprocess count data.</p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>adata</code></strong> :&ensp;<code>AnnData</code>, optional</dt>
<dd>The scanpy object.</dd>
<dt><strong><code>processed</code></strong> :&ensp;<code>boolean</code></dt>
<dd>Whether adata has been processed.</dd>
<dt><strong><code>dimred</code></strong> :&ensp;<code>boolean</code></dt>
<dd>Whether the processed adata is after dimension reduction.</dd>
<dt><strong><code>x</code></strong> :&ensp;<code>np.array</code>, optional</dt>
<dd><span><span class="MathJax_Preview">[N^{raw}, G^{raw}]</span><script type="math/tex">[N^{raw}, G^{raw}]</script></span> The raw count matrix.</dd>
<dt><strong><code>c</code></strong> :&ensp;<code>np.array</code></dt>
<dd><span><span class="MathJax_Preview">[N^{raw}, s]</span><script type="math/tex">[N^{raw}, s]</script></span> The covariate matrix.</dd>
<dt><strong><code>label_names</code></strong> :&ensp;<code>np.array </code></dt>
<dd><span><span class="MathJax_Preview">[N^{raw}, ]</span><script type="math/tex">[N^{raw}, ]</script></span> The true or estimated cell types.</dd>
<dt><strong><code>raw_cell_names</code></strong> :&ensp;<code>np.array
</code></dt>
<dd><span><span class="MathJax_Preview">[N^{raw}, ]</span><script type="math/tex">[N^{raw}, ]</script></span> The names of cells.</dd>
<dt><strong><code>raw_gene_names</code></strong> :&ensp;<code>np.array</code></dt>
<dd><span><span class="MathJax_Preview">[G^{raw}, ]</span><script type="math/tex">[G^{raw}, ]</script></span> The names of genes.</dd>
<dt><strong><code>K</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>The normalizing constant.</dd>
<dt><strong><code>transform_fn</code></strong> :&ensp;<code>str</code></dt>
<dd>The transform function used to normalize the gene expression after scaling. Either 'log' or 'sqrt'.</dd>
<dt><strong><code>gene_num</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>The number of genes to retain.</dd>
<dt><strong><code>data_type</code></strong> :&ensp;<code>str</code>, optional</dt>
<dd>'UMI', 'non-UMI', or 'Gaussian'.</dd>
<dt><strong><code>npc</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>The number of PCs to retain, only used if <code>data_type='Gaussian'</code>.</dd>
<dt><strong><code>random_state</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>The random state for PCA. With different random states, the resulted PCA scores are slightly different.</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><strong><code>x_normalized</code></strong> :&ensp;<code>np.array</code></dt>
<dd><span><span class="MathJax_Preview">[N, G]</span><script type="math/tex">[N, G]</script></span> The preprocessed matrix.</dd>
<dt><strong><code>expression</code></strong> :&ensp;<code>np.array</code></dt>
<dd><span><span class="MathJax_Preview">[N, G^{raw}]</span><script type="math/tex">[N, G^{raw}]</script></span> The expression matrix after log-normalization and before scaling.</dd>
<dt><strong><code>x</code></strong> :&ensp;<code>np.array</code></dt>
<dd><span><span class="MathJax_Preview">[N, G]</span><script type="math/tex">[N, G]</script></span> The raw count matrix after gene selections.</dd>
<dt><strong><code>c</code></strong> :&ensp;<code>np.array</code></dt>
<dd><span><span class="MathJax_Preview">[N, s]</span><script type="math/tex">[N, s]</script></span> The covariates.</dd>
<dt><strong><code>cell_names</code></strong> :&ensp;<code>np.array</code></dt>
<dd><span><span class="MathJax_Preview">[N, ]</span><script type="math/tex">[N, ]</script></span> The cell names.</dd>
<dt><strong><code>gene_names</code></strong> :&ensp;<code>np.array</code></dt>
<dd><span><span class="MathJax_Preview">[G^{raw}, ]</span><script type="math/tex">[G^{raw}, ]</script></span> The gene names.</dd>
<dt><strong><code>selected_gene_names</code></strong></dt>
<dd><span><span class="MathJax_Preview">[G, ]</span><script type="math/tex">[G, ]</script></span> The selected gene names.</dd>
<dt><strong><code>scale_factor</code></strong></dt>
<dd><span><span class="MathJax_Preview">[N, ]</span><script type="math/tex">[N, ]</script></span> The scale factors.</dd>
<dt><strong><code>labels</code></strong> :&ensp;<code>np.array</code></dt>
<dd><span><span class="MathJax_Preview">[N, ]</span><script type="math/tex">[N, ]</script></span> The encoded labels.</dd>
<dt><strong><code>label_names</code></strong> :&ensp;<code>np.array</code></dt>
<dd><span><span class="MathJax_Preview">[N, ]</span><script type="math/tex">[N, ]</script></span> The label names.</dd>
<dt><strong><code>le</code></strong> :&ensp;<code>sklearn.preprocessing.LabelEncoder</code></dt>
<dd>The label encoder.</dd>
<dt><strong><code>gene_scalar</code></strong> :&ensp;<code>sklearn.preprocessing.StandardScaler</code></dt>
<dd>The gene scaler.</dd>
</dl></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def preprocess(adata = None, processed: bool = False, dimred: bool = False,
x = None, c = None, label_names = None, raw_cell_names = None, raw_gene_names = None,
K: float = 1e4, transform_fn: str = &#39;log&#39;, gene_num: int = 2000, data_type: str = &#39;UMI&#39;,
npc: int = 64, random_state=0):
&#39;&#39;&#39;Preprocess count data.
Parameters
----------
adata : AnnData, optional
The scanpy object.
processed : boolean
Whether adata has been processed.
dimred : boolean
Whether the processed adata is after dimension reduction.
x : np.array, optional
\([N^{raw}, G^{raw}]\) The raw count matrix.
c : np.array
\([N^{raw}, s]\) The covariate matrix.
label_names : np.array
\([N^{raw}, ]\) The true or estimated cell types.
raw_cell_names : np.array
\([N^{raw}, ]\) The names of cells.
raw_gene_names : np.array
\([G^{raw}, ]\) The names of genes.
K : int, optional
The normalizing constant.
transform_fn : str
The transform function used to normalize the gene expression after scaling. Either &#39;log&#39; or &#39;sqrt&#39;.
gene_num : int, optional
The number of genes to retain.
data_type : str, optional
&#39;UMI&#39;, &#39;non-UMI&#39;, or &#39;Gaussian&#39;.
npc : int, optional
The number of PCs to retain, only used if `data_type=&#39;Gaussian&#39;`.
random_state : int, optional
The random state for PCA. With different random states, the resulted PCA scores are slightly different.
Returns
----------
x_normalized : np.array
\([N, G]\) The preprocessed matrix.
expression : np.array
\([N, G^{raw}]\) The expression matrix after log-normalization and before scaling.
x : np.array
\([N, G]\) The raw count matrix after gene selections.
c : np.array
\([N, s]\) The covariates.
cell_names : np.array
\([N, ]\) The cell names.
gene_names : np.array
\([G^{raw}, ]\) The gene names.
selected_gene_names :
\([G, ]\) The selected gene names.
scale_factor :
\([N, ]\) The scale factors.
labels : np.array
\([N, ]\) The encoded labels.
label_names : np.array
\([N, ]\) The label names.
le : sklearn.preprocessing.LabelEncoder
The label encoder.
gene_scalar : sklearn.preprocessing.StandardScaler
The gene scaler.
&#39;&#39;&#39;
# if input is a scanpy data
if adata is not None:
import scanpy as sc
# if the input scanpy is processed
if processed:
x_normalized = x = adata.X
gene_names = adata.var_names.values
expression = None
scale_factor = np.ones(x.shape[0])
# if the input scanpy is not processed
else:
dimred = False
x = adata.X.copy()
adata, expression, gene_names, cell_mask, gene_mask, gene_mask2 = _recipe_seurat(adata, gene_num)
x_normalized = adata.X.copy()
scale_factor = adata.obs.counts_per_cell.values / 1e4
x = x[cell_mask,:][:,gene_mask][:,gene_mask2]
if label_names is None:
try:
label_names = adata.obs.cell_types
except:
if label_names is not None and processed is False:
label_names = label_names[cell_mask]
cell_names = adata.obs_names.values
selected_gene_names = adata.var_names.values
gene_scalar = None
# if input is a count matrix
else:
# remove cells that have no expression
expressed = _check_expression(x)
print(&#39;Removing %d cells without expression.&#39;%(np.sum(expressed==0)))
x = x[expressed==1,:]
if c is not None:
c = c[expressed==1,:]
if label_names is not None:
label_names = label_names[expressed==1]
# remove genes without variability
variable = _check_variability(x)
print(&#39;Removing %d genes without variability.&#39;%(np.sum(variable==0)))
x = x[:, variable==1]
gene_names = raw_gene_names[variable==1]
# log-normalization
expression, scale_factor = normalize_gene_expression(x, K, transform_fn)
# feature selection
x, index = feature_select(x, gene_num)
selected_expression = expression[:, index]
# per-gene standardization
gene_scalar = preprocessing.StandardScaler()
x_normalized = gene_scalar.fit_transform(selected_expression)
cell_names = raw_cell_names[expressed==1]
selected_gene_names = gene_names[index]
if (data_type==&#39;Gaussian&#39;) and (dimred is False):
# use arpack solver and extend precision to get deterministic result
pca = PCA(n_components = npc, random_state=random_state, svd_solver=&#39;arpack&#39;)
x_normalized = x = pca.fit_transform(x_normalized.astype(np.float64)).astype(np.float32)
if c is not None:
c_scalar = preprocessing.StandardScaler()
c = c_scalar.fit_transform(c)
if label_names is None:
warnings.warn(&#39;No labels for cells!&#39;)
labels = None
le = None
else:
le = preprocessing.LabelEncoder()
labels = le.fit_transform(label_names)
print(&#39;Number of cells in each class: &#39;)
table = pd.value_counts(label_names)
table.index = pd.Series(le.transform(table.index).astype(str)) \
+ &#39; &lt;---&gt; &#39; + table.index
table = table.sort_index()
print(table)
return (x_normalized, expression, x, c,
cell_names, gene_names, selected_gene_names,
scale_factor, labels, label_names, le, gene_scalar)</code></pre>
</details>
</dd>
</dl>
</section>
<section>
</section>
</article>
<nav id="sidebar">
<h1>Index</h1>
<div class="toc">
<ul></ul>
</div>
<ul id="index">
<li><h3>Super-module</h3>
<ul>
<li><code><a title="VITAE" href="index.html">VITAE</a></code></li>
</ul>
</li>
<li><h3><a href="#header-functions">Functions</a></h3>
<ul class="">
<li><code><a title="VITAE.preprocess.normalize_gene_expression" href="#VITAE.preprocess.normalize_gene_expression">normalize_gene_expression</a></code></li>
<li><code><a title="VITAE.preprocess.feature_select" href="#VITAE.preprocess.feature_select">feature_select</a></code></li>
<li><code><a title="VITAE.preprocess.preprocess" href="#VITAE.preprocess.preprocess">preprocess</a></code></li>
</ul>
</li>
</ul>
</nav>
</main>
<footer id="footer">
<p>Generated by <a href="https://pdoc3.github.io/pdoc"><cite>pdoc</cite> 0.8.1</a>.</p>
</footer>
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
<script>hljs.initHighlightingOnLoad()</script>
</body>
</html>