Diff of /docs/inference.html [000000] .. [2c6b19]

Switch to unified view

a b/docs/inference.html
1
<!doctype html>
2
<html lang="en">
3
<head>
4
<meta charset="utf-8">
5
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1">
6
<meta name="generator" content="pdoc3 0.11.1">
7
<title>VITAE.inference API documentation</title>
8
<meta name="description" content="">
9
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/sanitize.min.css" integrity="sha512-y1dtMcuvtTMJc1yPgEqF0ZjQbhnc/bFhyvIyVNb9Zk5mIGtqVaAB1Ttl28su8AvFMOY0EwRbAe+HCLqj6W7/KA==" crossorigin>
10
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/typography.min.css" integrity="sha512-Y1DYSb995BAfxobCkKepB1BqJJTPrOp3zPL74AWFugHHmmdcvO+C48WLrUOlhGMc0QG7AE3f7gmvvcrmX2fDoA==" crossorigin>
11
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/styles/default.min.css" crossorigin>
12
<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:1.5em;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:2em 0 .50em 0}h3{font-size:1.4em;margin:1.6em 0 .7em 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .2s ease-in-out}a:visited{color:#503}a:hover{color:#b62}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900;font-weight:bold}pre code{font-size:.8em;line-height:1.4em;padding:1em;display:block}code{background:#f3f3f3;font-family:"DejaVu Sans Mono",monospace;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em 1em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
13
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul ul{padding-left:1em}.toc > ul > li{margin-top:.5em}}</style>
14
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
15
<script type="text/x-mathjax-config">MathJax.Hub.Config({ tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], processEscapes: true } });</script>
16
<script async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-AMS_CHTML" integrity="sha256-kZafAc6mZvK3W3v1pHOcUix30OHQN6pU/NO2oFkqZVw=" crossorigin></script>
17
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/highlight.min.js" integrity="sha512-D9gUyxqja7hBtkWpPWGt9wfbfaMGVt9gnyCvYa+jojwwPHLCzUm5i8rpk7vD7wNee9bA35eYIjobYPaQuKS1MQ==" crossorigin></script>
18
<script>window.addEventListener('DOMContentLoaded', () => {
19
hljs.configure({languages: ['bash', 'css', 'diff', 'graphql', 'ini', 'javascript', 'json', 'plaintext', 'python', 'python-repl', 'rust', 'shell', 'sql', 'typescript', 'xml', 'yaml']});
20
hljs.highlightAll();
21
})</script>
22
</head>
23
<body>
24
<main>
25
<article id="content">
26
<header>
27
<h1 class="title">Module <code>VITAE.inference</code></h1>
28
</header>
29
<section id="section-intro">
30
</section>
31
<section>
32
</section>
33
<section>
34
</section>
35
<section>
36
</section>
37
<section>
38
<h2 class="section-title" id="header-classes">Classes</h2>
39
<dl>
40
<dt id="VITAE.inference.Inferer"><code class="flex name class">
41
<span>class <span class="ident">Inferer</span></span>
42
<span>(</span><span>n_states: int)</span>
43
</code></dt>
44
<dd>
45
<div class="desc"><p>The class for doing inference based on posterior estimations.</p>
46
<h2 id="parameters">Parameters</h2>
47
<dl>
48
<dt><strong><code>n_states</code></strong> :&ensp;<code>int</code></dt>
49
<dd>The number of vertices in the latent space.</dd>
50
</dl></div>
51
<details class="source">
52
<summary>
53
<span>Expand source code</span>
54
</summary>
55
<pre><code class="python">class Inferer(object):
56
    &#39;&#39;&#39;
57
    The class for doing inference based on posterior estimations.
58
    &#39;&#39;&#39;
59
60
    def __init__(self, n_states: int):
61
        &#39;&#39;&#39;
62
        Parameters
63
        ----------
64
        n_states : int
65
            The number of vertices in the latent space.
66
        &#39;&#39;&#39;        
67
        self.n_states = n_states
68
        self.n_categories = int(n_states*(n_states+1)/2)
69
      #  self.A, self.B = np.nonzero(np.triu(np.ones(n_states)))
70
       ## indicator of the catagories
71
        self.C = np.triu(np.ones(n_states))
72
        self.C[self.C&gt;0] = np.arange(self.n_categories)
73
        self.C = self.C.astype(int)
74
        
75
    def build_graphs(self, w_tilde, pc_x, method: str = &#39;mean&#39;, thres: float = 0.5, no_loop: bool = False, 
76
            cutoff = 0):
77
        &#39;&#39;&#39;Build the backbone.
78
        
79
        Parameters
80
        ----------
81
        pc_x : np.array
82
            \([N, K]\) The estimated \(p(c_i|Y_i,X_i)\).        
83
        method : string, optional 
84
            &#39;mean&#39;, &#39;modified_mean&#39;, &#39;map&#39;, or &#39;modified_map&#39;.
85
        thres : float, optional 
86
            The threshold used for filtering edges \(e_{ij}\) that \((n_{i}+n_{j}+e_{ij})/N&lt;thres\), only applied to mean method.
87
88
        Retruns
89
        ----------
90
        G : nx.Graph
91
            The graph of edge scores.
92
        &#39;&#39;&#39;
93
        self.no_loop = no_loop
94
    #    self.w_tilde = w_tilde
95
96
        graph = np.zeros((self.n_states,self.n_states))
97
        if method==&#39;mean&#39;:
98
            for i in range(self.n_states-1):
99
                for j in range(i+1,self.n_states):
100
                    idx = np.sum(pc_x[:,self.C[[i,i,j],[i,j,j]]], axis=1)&gt;=thres
101
                    if np.sum(idx)&gt;0:
102
                        graph[i,j] = np.mean(pc_x[idx,self.C[i,j]]/np.sum(pc_x[idx][:,self.C[[i,i,j],[i,j,j]]], axis=-1))
103
        elif method==&#39;modified_mean&#39;:
104
            for i in range(self.n_states-1):
105
                for j in range(i+1,self.n_states):
106
                    idx = np.sum(pc_x[:,self.C[[i,i,j],[i,j,j]]], axis=1)&gt;=thres
107
                    if np.sum(idx)&gt;0:
108
                        graph[i,j] = np.sum(pc_x[idx,self.C[i,j]])/np.sum(pc_x[idx][:,self.C[[i,i,j],[i,j,j]]])
109
        elif method==&#39;map&#39;:
110
            c = np.argmax(pc_x, axis=-1)
111
            for i in range(self.n_states-1):
112
                for j in range(i+1,self.n_states):
113
                    if np.sum(c==self.C[i,j])&gt;0:
114
                        graph[i,j] = np.sum(c==self.C[i,j])/np.sum((c==self.C[i,j])|(c==self.C[i,i])|(c==self.C[j,j]))
115
        elif method==&#39;modified_map&#39;:
116
            c = np.argmax(pc_x, axis=-1)
117
            for i in range(self.n_states-1):
118
                for j in range(i+1,self.n_states):
119
                    graph[i,j] = np.sum(c==self.C[i,j])/(np.sum((w_tilde[:,i]&gt;0.5)|(w_tilde[:,j]&gt;0.5))+1e-16)
120
        elif method==&#39;raw_map&#39;:
121
            c = np.argmax(pc_x, axis=-1)
122
            for i in range(self.n_states-1):
123
                for j in range(i+1,self.n_states):
124
                    if np.sum(c==self.C[i,j])&gt;0:
125
                        graph[i,j] = np.sum(c==self.C[i,j])/np.sum(np.isin(c, np.diagonal(self.C)) == False)
126
        elif method == &#34;w_base&#34;:
127
            for i in range(self.n_states):
128
                for j in range(i+1,self.n_states):
129
                    two_vertice_max_w = w_tilde[(np.argmax(w_tilde, axis=1) == i) | (np.argmax(w_tilde, axis=1) == j),:]
130
                    num_two_vertice = two_vertice_max_w.shape[0]
131
                    if num_two_vertice &gt; 0:
132
                        graph[i, j] = np.sum(
133
                            np.abs(two_vertice_max_w[:, i] - two_vertice_max_w[:, j]) &lt; 0.1) / num_two_vertice
134
        elif method == &#34;modified_w_base&#34;:
135
            top2_idx = np.argpartition(w_tilde, -2, axis=1)[:, -2:]
136
            for i in range(self.n_states):
137
                for j in range(i + 1, self.n_states):
138
                    two_vertice_max_w = np.all(top2_idx == [i, j], axis=1) | np.all(top2_idx == [j, i], axis=1)
139
                    two_vertice_max_w = w_tilde[two_vertice_max_w, :]
140
                    vertice_count = w_tilde[(np.argmax(w_tilde, axis=1) == i) | (np.argmax(w_tilde, axis=1) == j), :]
141
                    vertice_count = vertice_count.shape[0]
142
                    if vertice_count &gt; 0:
143
                        edge_count = \
144
                            np.max((two_vertice_max_w[:, i], two_vertice_max_w[:, j]), axis=0) \
145
                            / (two_vertice_max_w[:, i] + two_vertice_max_w[:, j])
146
                        edge_count = np.sum(edge_count &lt; 0.55)
147
                        graph[i, j] = edge_count / vertice_count
148
        else:
149
            raise ValueError(&#34;Invalid method, must be one of &#39;mean&#39;, &#39;modified_mean&#39;, &#39;map&#39;, &#39;modified_map&#39;,&#39;raw_map&#39;,&#39;w_base&#39;, and &#39;modified_w_base&#39;.&#34;)
150
        
151
        graph[graph&lt;=cutoff] = 0
152
        G = nx.from_numpy_array(graph)
153
        
154
        if self.no_loop and not nx.is_tree(G):
155
            # prune if there are no loops
156
            G = nx.maximum_spanning_tree(G)
157
            
158
        return G
159
160
    def modify_wtilde(self, w_tilde, edges):
161
        &#39;&#39;&#39;Project \(\\tilde{w}\) to the estimated backbone.
162
        
163
        Parameters
164
        ----------
165
        w_tilde : np.array
166
            \([N, k]\) The estimated \(\\tilde{w}\).        
167
        edges : np.array
168
            \([|\\mathcal{E}(\\widehat{\\mathcal{B}})|, 2]\).
169
170
        Retruns
171
        ----------
172
        w : np.array
173
            The projected \(\\tilde{w}\).
174
        &#39;&#39;&#39;
175
        w = np.zeros_like(w_tilde)
176
        
177
        # projection on nodes
178
        best_proj_err_node = np.sum(w_tilde**2, axis=-1) - 2*np.max(w_tilde, axis=-1) +1
179
        best_proj_err_node_ind = np.argmax(w_tilde, axis=-1)
180
        
181
        if len(edges)&gt;0:
182
            # projection on edges
183
            idc = np.tile(np.arange(w.shape[0]), (2,1)).T
184
            ide = edges[np.argmax(np.sum(w_tilde[:,edges], axis=-1)**2 -
185
                                  4 * np.prod(w_tilde[:,edges], axis=-1) +
186
                                  2 * np.sum(w_tilde[:,edges], axis=-1), axis=-1)]
187
            w[idc, ide] = w_tilde[idc, ide] + (1-np.sum(w_tilde[idc, ide], axis=-1, keepdims=True))/2
188
            best_proj_err_edge = np.sum(w_tilde**2, axis=-1) - np.sum(w_tilde[idc, ide]**2, axis=-1) + (1-np.sum(w_tilde[idc, ide], axis=-1))**2/2
189
                         
190
            idc = (best_proj_err_node&lt;best_proj_err_edge)
191
            w[idc,:] = np.eye(w_tilde.shape[-1])[best_proj_err_node_ind[idc]]
192
        else:
193
            idc = np.arange(w.shape[0])
194
            w[idc, best_proj_err_node_ind] = 1
195
        return w
196
197
     
198
    def build_milestone_net(self, subgraph, init_node: int):
199
        &#39;&#39;&#39;Build the milestone network.
200
201
        Parameters
202
        ----------
203
        subgraph : nx.Graph
204
            The connected component of the backbone given the root vertex.
205
        init_node : int
206
            The root vertex.
207
        
208
        Returns
209
        ----------
210
        df_subgraph : pd.DataFrame 
211
            The milestone network.
212
        &#39;&#39;&#39;
213
        if len(subgraph)==1:
214
            warnings.warn(&#39;Singular node.&#39;)
215
            return []
216
        elif nx.is_directed_acyclic_graph(subgraph):
217
            milestone_net = []
218
            for edge in list(subgraph.edges):
219
                if edge[0]==init_node:
220
                    dist = 1
221
                elif edge[1]==init_node:
222
                    paths_0 = nx.all_simple_paths(subgraph, source=init_node, target=edge[0])
223
                    dist = - (np.max([len(p) for p in paths_1]) - 1)
224
                else:
225
                    paths_0 = nx.all_simple_paths(subgraph, source=init_node, target=edge[0])
226
                    paths_1 = nx.all_simple_paths(subgraph, source=init_node, target=edge[1])
227
                    dist = np.max([len(p) for p in paths_1]) - np.max([len(p) for p in paths_0])
228
                milestone_net.append([edge[0], edge[1], dist])
229
        else:
230
            # Dijkstra&#39;s Algorithm to find the shortest path
231
            unvisited = {node: {&#39;parent&#39;:None,
232
                                &#39;score&#39;:np.inf,
233
                                &#39;distance&#39;:np.inf} for node in subgraph.nodes}
234
            current = init_node
235
            currentScore = 0
236
            currentDistance = 0
237
            unvisited[current][&#39;score&#39;] = currentScore
238
239
            milestone_net = []
240
            while True:
241
                for neighbour in subgraph.neighbors(current):
242
                    if neighbour not in unvisited: continue
243
                    newScore = currentScore + subgraph[current][neighbour][&#39;weight&#39;]
244
                    if unvisited[neighbour][&#39;score&#39;] &gt; newScore:
245
                        unvisited[neighbour][&#39;score&#39;] = newScore
246
                        unvisited[neighbour][&#39;parent&#39;] = current
247
                        unvisited[neighbour][&#39;distance&#39;] = currentDistance+1
248
249
                if len(unvisited)&lt;len(subgraph):
250
                    milestone_net.append([unvisited[current][&#39;parent&#39;],
251
                                          current,
252
                                          unvisited[current][&#39;distance&#39;]])
253
                del unvisited[current]
254
                if not unvisited: break
255
                current, currentScore, currentDistance = \
256
                    sorted([(i[0],i[1][&#39;score&#39;],i[1][&#39;distance&#39;]) for i in unvisited.items()],
257
                            key = lambda x: x[1])[0]
258
            return np.array(milestone_net)
259
    
260
261
    def comp_pseudotime(self, milestone_net, init_node: int, w):
262
        &#39;&#39;&#39;Compute pseudotime.
263
264
        Parameters
265
        ----------
266
        milestone_net : pd.DataFrame
267
            The milestone network.
268
        init_node : int
269
            The root vertex.
270
        w : np.array
271
            \([N, k]\) The projected \(\\tilde{w}\).
272
        
273
        Returns
274
        ----------
275
        pseudotime : np.array
276
            \([N, k]\) The estimated pseudtotime.
277
        &#39;&#39;&#39;
278
        pseudotime = np.empty(w.shape[0])
279
        pseudotime.fill(np.nan)
280
        pseudotime[w[:,init_node]==1] = 0
281
        
282
        if len(milestone_net)&gt;0:
283
            for i in range(len(milestone_net)):
284
                _from, _to = milestone_net[i,:2]
285
                _from, _to = int(_from), int(_to)
286
287
                idc = ((w[:,_from]&gt;0)&amp;(w[:,_to]&gt;0)) | (w[:,_to]==1)
288
                pseudotime[idc] = w[idc,_to] + milestone_net[i,-1] - 1
289
        
290
        return pseudotime</code></pre>
291
</details>
292
<h3>Methods</h3>
293
<dl>
294
<dt id="VITAE.inference.Inferer.build_graphs"><code class="name flex">
295
<span>def <span class="ident">build_graphs</span></span>(<span>self, w_tilde, pc_x, method: str = 'mean', thres: float = 0.5, no_loop: bool = False, cutoff=0)</span>
296
</code></dt>
297
<dd>
298
<div class="desc"><p>Build the backbone.</p>
299
<h2 id="parameters">Parameters</h2>
300
<dl>
301
<dt><strong><code>pc_x</code></strong> :&ensp;<code>np.array</code></dt>
302
<dd><span><span class="MathJax_Preview">[N, K]</span><script type="math/tex">[N, K]</script></span> The estimated <span><span class="MathJax_Preview">p(c_i|Y_i,X_i)</span><script type="math/tex">p(c_i|Y_i,X_i)</script></span>.</dd>
303
<dt><strong><code>method</code></strong> :&ensp;<code>string</code>, optional</dt>
304
<dd>'mean', 'modified_mean', 'map', or 'modified_map'.</dd>
305
<dt><strong><code>thres</code></strong> :&ensp;<code>float</code>, optional</dt>
306
<dd>The threshold used for filtering edges <span><span class="MathJax_Preview">e_{ij}</span><script type="math/tex">e_{ij}</script></span> that <span><span class="MathJax_Preview">(n_{i}+n_{j}+e_{ij})/N&lt;thres</span><script type="math/tex">(n_{i}+n_{j}+e_{ij})/N<thres</script></span>, only applied to mean method.</dd>
307
</dl>
308
<h2 id="retruns">Retruns</h2>
309
<p>G : nx.Graph
310
The graph of edge scores.</p></div>
311
</dd>
312
<dt id="VITAE.inference.Inferer.modify_wtilde"><code class="name flex">
313
<span>def <span class="ident">modify_wtilde</span></span>(<span>self, w_tilde, edges)</span>
314
</code></dt>
315
<dd>
316
<div class="desc"><p>Project <span><span class="MathJax_Preview">\tilde{w}</span><script type="math/tex">\tilde{w}</script></span> to the estimated backbone.</p>
317
<h2 id="parameters">Parameters</h2>
318
<dl>
319
<dt><strong><code>w_tilde</code></strong> :&ensp;<code>np.array</code></dt>
320
<dd><span><span class="MathJax_Preview">[N, k]</span><script type="math/tex">[N, k]</script></span> The estimated <span><span class="MathJax_Preview">\tilde{w}</span><script type="math/tex">\tilde{w}</script></span>.</dd>
321
<dt><strong><code>edges</code></strong> :&ensp;<code>np.array</code></dt>
322
<dd><span><span class="MathJax_Preview">[|\mathcal{E}(\widehat{\mathcal{B}})|, 2]</span><script type="math/tex">[|\mathcal{E}(\widehat{\mathcal{B}})|, 2]</script></span>.</dd>
323
</dl>
324
<h2 id="retruns">Retruns</h2>
325
<p>w : np.array
326
The projected <span><span class="MathJax_Preview">\tilde{w}</span><script type="math/tex">\tilde{w}</script></span>.</p></div>
327
</dd>
328
<dt id="VITAE.inference.Inferer.build_milestone_net"><code class="name flex">
329
<span>def <span class="ident">build_milestone_net</span></span>(<span>self, subgraph, init_node: int)</span>
330
</code></dt>
331
<dd>
332
<div class="desc"><p>Build the milestone network.</p>
333
<h2 id="parameters">Parameters</h2>
334
<dl>
335
<dt><strong><code>subgraph</code></strong> :&ensp;<code>nx.Graph</code></dt>
336
<dd>The connected component of the backbone given the root vertex.</dd>
337
<dt><strong><code>init_node</code></strong> :&ensp;<code>int</code></dt>
338
<dd>The root vertex.</dd>
339
</dl>
340
<h2 id="returns">Returns</h2>
341
<dl>
342
<dt><strong><code>df_subgraph</code></strong> :&ensp;<code>pd.DataFrame </code></dt>
343
<dd>The milestone network.</dd>
344
</dl></div>
345
</dd>
346
<dt id="VITAE.inference.Inferer.comp_pseudotime"><code class="name flex">
347
<span>def <span class="ident">comp_pseudotime</span></span>(<span>self, milestone_net, init_node: int, w)</span>
348
</code></dt>
349
<dd>
350
<div class="desc"><p>Compute pseudotime.</p>
351
<h2 id="parameters">Parameters</h2>
352
<dl>
353
<dt><strong><code>milestone_net</code></strong> :&ensp;<code>pd.DataFrame</code></dt>
354
<dd>The milestone network.</dd>
355
<dt><strong><code>init_node</code></strong> :&ensp;<code>int</code></dt>
356
<dd>The root vertex.</dd>
357
<dt><strong><code>w</code></strong> :&ensp;<code>np.array</code></dt>
358
<dd><span><span class="MathJax_Preview">[N, k]</span><script type="math/tex">[N, k]</script></span> The projected <span><span class="MathJax_Preview">\tilde{w}</span><script type="math/tex">\tilde{w}</script></span>.</dd>
359
</dl>
360
<h2 id="returns">Returns</h2>
361
<dl>
362
<dt><strong><code>pseudotime</code></strong> :&ensp;<code>np.array</code></dt>
363
<dd><span><span class="MathJax_Preview">[N, k]</span><script type="math/tex">[N, k]</script></span> The estimated pseudtotime.</dd>
364
</dl></div>
365
</dd>
366
</dl>
367
</dd>
368
</dl>
369
</section>
370
</article>
371
<nav id="sidebar">
372
<div class="toc">
373
<ul></ul>
374
</div>
375
<ul id="index">
376
<li><h3>Super-module</h3>
377
<ul>
378
<li><code><a title="VITAE" href="index.html">VITAE</a></code></li>
379
</ul>
380
</li>
381
<li><h3><a href="#header-classes">Classes</a></h3>
382
<ul>
383
<li>
384
<h4><code><a title="VITAE.inference.Inferer" href="#VITAE.inference.Inferer">Inferer</a></code></h4>
385
<ul class="">
386
<li><code><a title="VITAE.inference.Inferer.build_graphs" href="#VITAE.inference.Inferer.build_graphs">build_graphs</a></code></li>
387
<li><code><a title="VITAE.inference.Inferer.modify_wtilde" href="#VITAE.inference.Inferer.modify_wtilde">modify_wtilde</a></code></li>
388
<li><code><a title="VITAE.inference.Inferer.build_milestone_net" href="#VITAE.inference.Inferer.build_milestone_net">build_milestone_net</a></code></li>
389
<li><code><a title="VITAE.inference.Inferer.comp_pseudotime" href="#VITAE.inference.Inferer.comp_pseudotime">comp_pseudotime</a></code></li>
390
</ul>
391
</li>
392
</ul>
393
</li>
394
</ul>
395
</nav>
396
</main>
397
<footer id="footer">
398
<p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.11.1</a>.</p>
399
</footer>
400
</body>
401
</html>