import os
import joblib
from joblib import delayed
from tqdm.auto import tqdm
import requests
from typing import List, Dict, Union
import numpy as np
import pandas as pd
import glob
import json
import torch
import medspacy
import spacy
from spacy.matcher import PhraseMatcher
from spacy.tokens import Span
from spacy.language import Language
from spacy.util import filter_spans
from spacy.tokens import Doc, Token
from spacy.matcher import Matcher
from srsly import read_json
import re
import transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import warnings
# Filepaths
INPUT_FILEPATH = '/home/mabdallah/TrialMatchAI/data/preprocessed_data'
OUTPUT_FILEPATH_CT = '/home/mabdallah/TrialMatchAI/data/ner_clinical_trials/'
# OUTPUT_FILEPATH_PAT = "../data/ner_patients_clinical_notes/"
# List of auxiliary entities
AUXILIARY_ENTITIES_LIST = ["Sign_symptom", "Biological_structure", "Date", "Duration", "Time", "Frequency",
"Severity", "Lab_value", "Dosage", "Diagnostic_procedure", "Therapeutic_procedure", "Medication",
"Clinical_event", "Outcome", "History", "Subject", "Family_history", "Detailed_description", "Area"]
# Check if CUDA is available
device0 = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
device1 = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
device2 = torch.device("cuda:2" if torch.cuda.is_available() else "cpu")
# Load auxiliary tokenizer and pipeline
aux_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all", model_max_length=512, max_length=512, truncation=True)
aux_pipeline = pipeline("ner", model="d4data/biomedical-ner-all", tokenizer=aux_tokenizer, aggregation_strategy="first", device=device0)
# Load mutations tokenizer and pipeline
mutations_tokenizer = AutoTokenizer.from_pretrained("Brizape/tmvar-PubMedBert-finetuned-24-02", model_max_length=512, max_length=512, truncation=True)
mutations_pipeline = pipeline("ner", model="Brizape/tmvar-PubMedBert-finetuned-24-02", tokenizer=mutations_tokenizer, aggregation_strategy="first", device=device1)
neg_tokenizer = AutoTokenizer.from_pretrained("bvanaken/clinical-assertion-negation-bert", model_max_length=512, max_length=512, truncation=True)
neg_model = AutoModelForSequenceClassification.from_pretrained("bvanaken/clinical-assertion-negation-bert")
neg_classifier = pipeline("text-classification", model=neg_model, tokenizer=neg_tokenizer, device=device2)
def query_plain(text, url="http://localhost:8888/plain"):
"""
Send a plain text query to a specified URL.
This function sends a plain text query to a specified URL using the POST method. The query is sent as a JSON object with the 'text' key.
The response is received as a JSON object and is decoded into a string.
Parameters:
text (str): The plain text query to be sent.
url (str): The URL to which the query is sent. Default is "http://localhost:8888/plain".
Returns:
dict: The response received as a JSON object.
Example:
query_plain("Hello, world!")
# Output: {'response': 'Hello, world!'}
"""
return json.loads(requests.post(url, json={'text': text}).content.decode('utf-8'))
# Memory caching for function calls
memory = joblib.Memory(".")
def ParallelExecutor(use_bar="tqdm", **joblib_args):
"""
Utility function for tqdm progress bar in joblib.Parallel.
This function is a utility for using tqdm progress bar with joblib.Parallel. It returns a function that can be used as a wrapper
for the operation iterator in joblib.Parallel. The function takes a 'bar' argument which specifies the type of progress bar to use.
The available options are 'tqdm', 'False', and 'None'. The function also accepts additional arguments that are passed to tqdm.
Parameters:
use_bar (str): The type of progress bar to use. Default is "tqdm".
**tq_args: Additional arguments to be passed to tqdm.
Returns:
function: The wrapper function that can be used with joblib.Parallel.
Example:
executor = ParallelExecutor(use_bar="tqdm", ncols=80)
results = executor(op_iter)
"""
all_bar_funcs = {
"tqdm": lambda args: lambda x: tqdm(x, **args),
"False": lambda args: lambda x: x,
"None": lambda args: lambda x: x,
}
def aprun(bar=use_bar, **tq_args):
def tmp(op_iter):
if str(bar) in all_bar_funcs.keys():
bar_func = all_bar_funcs[str(bar)](tq_args)
else:
raise ValueError("Value %s not supported as bar type" % bar)
# Pass n_jobs from joblib_args
return joblib.Parallel(n_jobs=joblib_args.get("n_jobs", 10))(bar_func(op_iter))
return tmp
return aprun
def get_dictionaries_of_specific_entities(list_of_dicts, key, values):
"""
Filter a list of dictionaries based on the presence of specific values in a specified key.
This function takes a list of dictionaries and filters them based on the presence of specific values in a specified key.
The function checks each dictionary in the input list and includes only those dictionaries where any of the given values
are present in the specified key. The filtering is performed using list comprehensions.
Parameters:
list_of_dicts (list): A list of dictionaries to be filtered.
key (str): The key in the dictionaries where the filtering is applied.
values (list): A list of values. The function will filter dictionaries where any of these values are present in the specified key.
Returns:
list: A list of dictionaries that meet the filtering criteria.
Example:
list_of_dicts = [
{"name": "Alice", "age": 30},
{"name": "Bob", "age": 25},
{"name": "Charlie", "age": 35},
{"name": "David", "age": 30},
]
get_dictionaries_of_specific_entities(list_of_dicts, "age", [30, 35])
# Output: [
# {"name": "Alice", "age": 30},
# {"name": "Charlie", "age": 35},
# {"name": "David", "age": 30}
# ]
"""
return [d for d in list_of_dicts if any(val in d.get(key, []) for val in values)]
def add_custom_entity(doc, entity):
"""
Add a custom entity to a spaCy document.
This function takes a spaCy document and a custom entity dictionary and adds the custom entity to the document.
The function finds the token indices corresponding to the character span of the entity and sets the entity span in the document.
Parameters:
doc (spacy.tokens.Doc): The spaCy document to which the entity is added.
entity (dict): The custom entity dictionary containing the text, start, end, and entity_group.
Returns:
spacy.tokens.Doc: The modified spaCy document with the custom entity added.
Example:
doc = nlp("The patient has a fever.")
entity = {"text": "fever", "start": 16, "end": 21, "entity_group": "Symptom"}
doc = add_custom_entity(doc, entity)
"""
entity["text"] = re.sub(r'([,.-])\s+', r'\1', entity["text"])
entity_text = entity["text"].lower()
start_char = entity["start"]
end_char = entity["end"]
# Find the token indices corresponding to the character span
start_indices = [i for i, token in enumerate(doc) if (start_char <= token.idx <= end_char) or (entity_text in token.text and token.idx <= start_char)]
if start_indices:
# You can choose the first matching window or handle multiple matches
start_index = start_indices[0]
start_token = doc[start_index]
end_index = min(start_index + len(entity_text.split()) - 1, len(doc) - 1)
end_token = doc[end_index]
doc.set_ents([Span(doc, start_token.i, end_token.i + 1, entity["entity_group"])])
return doc
def negation_handling(sentence, entity):
"""
Perform negation handling on a sentence with a given entity.
This function takes a sentence and an entity dictionary and performs negation handling on the sentence.
The function uses medSpaCy to identify negation cues and determines if the entity is negated or not.
Parameters:
sentence (str): The sentence in which the entity is present.
entity (dict): The entity dictionary containing the text, start, and end.
Returns:
dict: The modified entity dictionary with the "is_negated" field indicating if the entity is negated or not.
Example:
sentence = "The patient does not have a fever."
entity = {"text": "fever", "start": 23, "end": 28}
entity = negation_handling(sentence, entity)
"""
nlp = spacy.load("en_core_web_sm", disable={"ner"})
doc = nlp(sentence.lower())
nlp = medspacy.load(nlp)
nlp.disable_pipe('medspacy_target_matcher')
nlp.disable_pipe('medspacy_pyrush')
doc = nlp(add_custom_entity(doc, entity))
for e in doc.ents:
rs = str(e._.is_negated)
if rs:
if rs == "True":
entity["is_negated"] = "yes"
elif rs == 'False':
entity["is_negated"] = "no"
else:
entity["is_negated"] = "no"
return entity
def is_entity_negated(sentence, entity):
# Surround the entity with [entity] on both sides
entity_text = entity["text"]
sentence_with_entity = re.sub(rf'\b{re.escape(entity_text)}\b', f"[entity]{entity_text}[entity]", sentence)
# Classify the modified sentence to check for negation
classification = neg_classifier(sentence_with_entity, max_length=512, truncation=True)[0]
is_negated = classification['label'] == 'ABSENT'
if is_negated:
entity["is_negated"] = "yes"
else:
entity["is_negated"] = "no"
return entity
class EntityRecognizer:
def __init__(self, id_list, n_jobs, data_source="clinical trials"):
self.id_list = id_list
self.n_jobs = n_jobs
self.data_source = data_source
def data_loader(self, id_list):
to_concat = []
for idx in id_list:
if self.data_source == "clinical trials":
file_path = os.path.join(INPUT_FILEPATH, "clinical_trials", f"{idx}_preprocessed.csv")
if os.path.exists(file_path):
df = pd.read_csv(file_path)
to_concat.append(df)
elif self.data_source=="patient notes":
df = pd.read_csv(INPUT_FILEPATH + "patient_notes/" + "%s_preprocessed.csv"%idx)
to_concat.append(df)
else:
warnings.warn("Unexpected data source encountered. Please choose between 'clinical trials' or 'patient notes'", UserWarning)
return to_concat
def mtner_normalize_format(self, json_data):
spacy_format_entities = []
for annotation in json_data["annotations"]:
start = annotation["span"]["begin"]
end = annotation["span"]["end"]
label = annotation["obj"]
mention = annotation["mention"]
score = annotation["prob"]
normalized_id = annotation["id"]
spacy_format_entities.append({
"entity_group": label,
"text": mention,
"score": score,
"start": start,
"end": end,
"normalized_id": normalized_id
})
spacy_result = {
"text": json_data["text"],
"ents": spacy_format_entities,
}
return spacy_result
def merge_lists_with_priority_to_first(self, list1, list2):
merged_list = list1.copy()
for dict2 in list2:
overlap = False
for dict1 in list1:
if (dict1['start'] <= dict2['end'] and dict2['start'] <= dict1['start']) or (dict2['start'] <= dict1['end'] and dict1['start'] <= dict2['start']):
overlap = True
break
if not overlap:
merged_list.append(dict2)
return merged_list
def merge_lists_without_priority(self, list1, list2):
merged_list = list1.copy()
for dict2 in list2:
merged_list.append(dict2)
return merged_list
def find_and_remove_overlaps(self, dictionary_list, if_overlap_keep):
# Create a dictionary to store non-overlapping entries
non_overlapping = {}
# Create a set of entity groups to keep
preferred_set = set(if_overlap_keep)
# Iterate through the input list
for entry in dictionary_list:
if 'text' in entry and 'entity_group' in entry:
text = entry['text']
group = entry['entity_group']
# Check if the text is already in the non_overlapping dictionary
if text in non_overlapping:
# Compare groups and keep the entry if it belongs to one of the preferred groups
if group in preferred_set:
non_overlapping[text] = entry
else:
non_overlapping[text] = entry
# Convert the non-overlapping dictionary back to a list
result_list = list(non_overlapping.values())
return result_list
def aberration_type_recognizer(self, text):
med_nlp = medspacy.load()
med_nlp.disable_pipe('medspacy_target_matcher')
@Language.component("aberrations-ner")
def regex_pattern_matcher_for_aberrations(doc):
df_regex = pd.read_csv("/home/mabdallah/TrialMatchAI/data/regex_variants.tsv", sep="\t", header=None)
df_regex = df_regex.rename(columns={1 : "label", 2:"regex_pattern"}).drop(columns=[0])
dict_regex = df_regex.set_index('label')['regex_pattern'].to_dict()
original_ents = list(doc.ents)
# Compile the regex patterns
compiled_patterns = {
label: re.compile(pattern)
for label, pattern in dict_regex.items()
}
mwt_ents = []
for label, pattern in compiled_patterns.items():
for match in re.finditer(pattern, doc.text):
start, end = match.span()
span = doc.char_span(start, end)
if span is not None:
mwt_ents.append((label, span.start, span.end, span.text))
for ent in mwt_ents:
label, start, end, name = ent
per_ent = Span(doc, start, end, label=label)
original_ents.append(per_ent)
doc.ents = filter_spans(original_ents)
return doc
med_nlp.add_pipe("aberrations-ner", before='medspacy_context')
doc = med_nlp(text)
ent_list =[]
for entity in doc.ents:
ent_list.append({"entity_group" : entity.label_,
"text" : entity.text,
"start": entity.start_char,
"end": entity.end_char,
"is_negated" : "yes" if entity._.is_negated else "no"})
return ent_list
def pregnancy_recognizer(self, text):
med_nlp = medspacy.load()
med_nlp.disable_pipe('medspacy_target_matcher')
# Updated regex pattern
regex_pattern = r"(?i)\b(?:pregn\w+|matern\w+|gestat\w+|lactat\w+|breastfeed\w+|prenat\w+|antenat\w+|postpartum|childbear\w+|parturient|conceiv\w+|obstetr\w+)\b"
@Language.component("pregnancy-ner")
def regex_pattern_matcher_for_pregnancy(doc):
compiled_pattern = re.compile(regex_pattern)
original_ents = list(doc.ents)
mwt_ents = []
for match in re.finditer(compiled_pattern, doc.text):
start, end = match.span()
span = doc.char_span(start, end)
if span is not None:
mwt_ents.append((span.start, span.end, span.text))
for ent in mwt_ents:
start, end, name = ent
per_ent = Span(doc, start, end, label="pregnancy") # Assigning the label "pregnancy"
original_ents.append(per_ent)
doc.ents = filter_spans(original_ents)
return doc
med_nlp.add_pipe("pregnancy-ner", before='medspacy_context')
doc = med_nlp(text)
ent_list =[]
for entity in doc.ents:
ent_list.append({
"entity_group": entity.label_,
"text": entity.text,
"start": entity.start_char,
"end": entity.end_char,
"is_negated": "yes" if entity._.is_negated else "no"
})
return ent_list
def merge_similar_consecutive_entities(self, entities):
combined_entities = []
if entities:
current_entity = entities[0]
for next_entity in entities[1:]:
if (
'text' in current_entity
and 'text' in next_entity
and 'entity_group' in current_entity
and 'entity_group' in next_entity
and 'start' in current_entity
and 'end' in current_entity
and 'start' in next_entity
and 'end' in next_entity
and current_entity['entity_group'] == next_entity['entity_group']
and next_entity['start'] - current_entity['end'] - 1 <= 3
):
current_entity['text'] += ' ' + next_entity['text']
current_entity['end'] = next_entity['end']
else:
combined_entities.append(current_entity)
current_entity = next_entity
combined_entities.append(current_entity)
return combined_entities
def recognize_entities(self, df):
_ids = []
sentences = []
entities_groups = []
entities_texts = []
normalized_ids = []
is_negated = []
field = []
start= []
end = []
df = df.dropna()
for _,row in df.iterrows():
sent = row["sentence"].replace(",", "")
main_entities = self.mtner_normalize_format(query_plain(sent))["ents"]
variants_entities = mutations_pipeline(sent)
aberration_type_entities = self.aberration_type_recognizer(sent)
pregnancy_entities = self.pregnancy_recognizer(sent)
aux_entities = aux_pipeline(sent)
aux_entities = get_dictionaries_of_specific_entities(aux_entities, "entity_group", AUXILIARY_ENTITIES_LIST)
aux_entities = [{"text" if k == "word" else k: v for k, v in d.items()} for d in aux_entities]
combined_entities = self.merge_lists_with_priority_to_first(variants_entities, main_entities)
combined_entities = self.merge_lists_with_priority_to_first(combined_entities, aux_entities)
combined_entities = self.merge_lists_without_priority(combined_entities, pregnancy_entities)
combined_entities = self.merge_lists_with_priority_to_first(combined_entities, aberration_type_entities)
combined_entities = self.merge_similar_consecutive_entities(combined_entities)
# Convert the selected_entries dictionary back to a list
if len(combined_entities) > 0:
# clean_entities = self.find_and_remove_overlaps(combined_entities, if_overlap_keep=["gene", "ProteinMutation", "DNAMutation", "SNP"])
for e in combined_entities:
if 'text' in e and 'entity_group' in e:
if (("score" in e and e["score"] > 0.7) or ("score" not in e)) and len(e["text"]) > 1:
ent = is_entity_negated(sent, e)
ent["text"] = re.sub(r'([,.-])\s+', r'\1', e["text"])
is_negated.append(ent["is_negated"])
_ids.append(row["id"])
sentences.append(sent)
entities_groups.append(ent['entity_group'])
entities_texts.append(ent['text'])
start.append(ent["start"])
end.append(ent["end"])
if "normalized_id" in ent:
normalized_ids.append(ent["normalized_id"])
else:
normalized_ids.append("CUI-less")
if self.data_source=="clinical trials":
field.append(row["criteria"])
elif self.data_source=="patient notes":
field.append(row["field"])
else:
continue
return pd.DataFrame({
'nct_id': _ids,
'text': sentences,
'entity_text': entities_texts,
'entity_group': entities_groups,
'normalized_id': normalized_ids,
'field' : field,
"is_negated" : is_negated,
})
def save_output(self, df, output_filepath):
df.to_csv(output_filepath, index=False)
def __call__(self):
all_df = self.data_loader(self.id_list)
def process_dataframe(df):
output_filepath = OUTPUT_FILEPATH_CT + df["id"].iloc[0] + ".csv"
if not os.path.exists(output_filepath):
result_df = self.recognize_entities(df)
if self.data_source == "clinical trials":
self.save_output(result_df, output_filepath)
return result_df
parallel_runner = ParallelExecutor(n_jobs=self.n_jobs)(total=len(self.id_list))
parallel_runner(delayed(process_dataframe)(df) for df in all_df)
return
if __name__ == "__main__":
# Load the list of NCT IDs
folder_path = '/home/mabdallah/TrialMatchAI/data/trials_xmls' # Replace this with the path to your folder
file_names = []
# List all files in the folder
for file in os.listdir(folder_path):
if os.path.isfile(os.path.join(folder_path, file)):
file_name, file_extension = os.path.splitext(file)
file_names.append(file_name)
nct_ids = file_names
reco = EntityRecognizer(n_jobs=5, id_list=nct_ids, data_source="clinical trials")
entities = reco()
# # Load the list of patient IDs
# pat_ids = pd.read_csv("../data/patient_ids.csv")
# pat_ids = pat_ids["id"].tolist()
# reco = EntityRecognizer(n_jobs=50, id_list=pat_ids, data_source="patient notes")
# entities = reco()
# entities.to_csv("../data/ner_patients_clinical_notes/entities_parsed.csv", index = False)