|
a |
|
b/src/Parser/ops.py |
|
|
1 |
import re |
|
|
2 |
import copy |
|
|
3 |
import json |
|
|
4 |
import time |
|
|
5 |
|
|
|
6 |
import numpy as np |
|
|
7 |
import xml.etree.ElementTree as ElTree |
|
|
8 |
|
|
|
9 |
from datetime import datetime, timezone |
|
|
10 |
from operator import itemgetter |
|
|
11 |
|
|
|
12 |
|
|
|
13 |
tokenize_regex = re.compile(r'([0-9a-zA-Z]+|[^0-9a-zA-Z])') |
|
|
14 |
|
|
|
15 |
def json_to_sent(data): |
|
|
16 |
'''data: list of json file [{pmid,abstract,title}, ...] ''' |
|
|
17 |
out = dict() |
|
|
18 |
for paper in data: |
|
|
19 |
sentences = list() |
|
|
20 |
|
|
|
21 |
if len(CoNLL_tokenizer(paper['title'])) < 50: |
|
|
22 |
title = [paper['title']] |
|
|
23 |
else: |
|
|
24 |
title = sentence_split(paper['title']) |
|
|
25 |
if len(title) != 1 or len(title[0].strip()) > 0: |
|
|
26 |
sentences.extend(title) |
|
|
27 |
|
|
|
28 |
if len(paper['abstract']) > 0: |
|
|
29 |
abst = sentence_split(paper['abstract']) |
|
|
30 |
if len(abst) != 1 or len(abst[0].strip()) > 0: |
|
|
31 |
sentences.extend(abst) |
|
|
32 |
out[paper['pmid']] = dict() |
|
|
33 |
out[paper['pmid']]['sentence'] = sentences |
|
|
34 |
return out |
|
|
35 |
|
|
|
36 |
def input_form(sent_data): |
|
|
37 |
'''sent_data: dict of sentence, key=pmid {pmid:[sent,sent, ...], pmid: ...}''' |
|
|
38 |
for pmid in sent_data: |
|
|
39 |
sent_data[pmid]['words'] = list() |
|
|
40 |
sent_data[pmid]['wordPos'] = list() |
|
|
41 |
doc_piv = 0 |
|
|
42 |
for sent in sent_data[pmid]['sentence']: |
|
|
43 |
wids = list() |
|
|
44 |
wpos = list() |
|
|
45 |
sent_piv = 0 |
|
|
46 |
tok = CoNLL_tokenizer(sent) |
|
|
47 |
|
|
|
48 |
for w in tok: |
|
|
49 |
if len(w) > 20: |
|
|
50 |
wids.append(w[:10]) |
|
|
51 |
else: |
|
|
52 |
wids.append(w) |
|
|
53 |
|
|
|
54 |
start = doc_piv + sent_piv + sent[sent_piv:].find(w) |
|
|
55 |
end = start + len(w) - 1 |
|
|
56 |
sent_piv = end - doc_piv + 1 |
|
|
57 |
wpos.append((start, end)) |
|
|
58 |
doc_piv += len(sent) |
|
|
59 |
sent_data[pmid]['words'].append(wids) |
|
|
60 |
sent_data[pmid]['wordPos'].append(wpos) |
|
|
61 |
|
|
|
62 |
return sent_data |
|
|
63 |
|
|
|
64 |
def softmax(logits): |
|
|
65 |
out = list() |
|
|
66 |
for logit in logits: |
|
|
67 |
temp = np.subtract(logit, np.max(logit)) |
|
|
68 |
p = np.exp(temp) / np.sum(np.exp(temp)) |
|
|
69 |
out.append(np.max(p)) |
|
|
70 |
return out |
|
|
71 |
|
|
|
72 |
def CoNLL_tokenizer(text): |
|
|
73 |
rawTok = [t for t in tokenize_regex.split(text) if t] |
|
|
74 |
assert ''.join(rawTok) == text |
|
|
75 |
tok = [t for t in rawTok if t != ' '] |
|
|
76 |
return tok |
|
|
77 |
|
|
|
78 |
def sentence_split(text): |
|
|
79 |
sentences = list() |
|
|
80 |
sent = '' |
|
|
81 |
piv = 0 |
|
|
82 |
for idx, char in enumerate(text): |
|
|
83 |
if char in "?!": |
|
|
84 |
if idx > len(text) - 3: |
|
|
85 |
sent = text[piv:] |
|
|
86 |
piv = -1 |
|
|
87 |
else: |
|
|
88 |
sent = text[piv:idx + 1] |
|
|
89 |
piv = idx + 1 |
|
|
90 |
|
|
|
91 |
elif char == '.': |
|
|
92 |
if idx > len(text) - 3: |
|
|
93 |
sent = text[piv:] |
|
|
94 |
piv = -1 |
|
|
95 |
elif (text[idx + 1] == ' ') and ( |
|
|
96 |
text[idx + 2] in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ-"' + "'"): |
|
|
97 |
sent = text[piv:idx + 1] |
|
|
98 |
piv = idx + 1 |
|
|
99 |
|
|
|
100 |
if sent != '': |
|
|
101 |
toks = CoNLL_tokenizer(sent) |
|
|
102 |
if len(toks) > 100: |
|
|
103 |
while True: |
|
|
104 |
rawTok = [t for t in tokenize_regex.split(sent) if t] |
|
|
105 |
cut = ''.join(rawTok[:200]) |
|
|
106 |
sent = ''.join(rawTok[200:]) |
|
|
107 |
sentences.append(cut) |
|
|
108 |
|
|
|
109 |
if len(CoNLL_tokenizer(sent)) < 100: |
|
|
110 |
if sent.strip() == '': |
|
|
111 |
sent = '' |
|
|
112 |
break |
|
|
113 |
else: |
|
|
114 |
sentences.append(sent) |
|
|
115 |
sent = '' |
|
|
116 |
break |
|
|
117 |
else: |
|
|
118 |
sentences.append(sent) |
|
|
119 |
sent = '' |
|
|
120 |
|
|
|
121 |
if piv == -1: |
|
|
122 |
break |
|
|
123 |
|
|
|
124 |
if piv != -1: |
|
|
125 |
sent = text[piv:] |
|
|
126 |
toks = CoNLL_tokenizer(sent) |
|
|
127 |
if len(toks) > 100: |
|
|
128 |
while True: |
|
|
129 |
rawTok = [t for t in tokenize_regex.split(sent) if t] |
|
|
130 |
cut = ''.join(rawTok[:200]) |
|
|
131 |
sent = ''.join(rawTok[200:]) |
|
|
132 |
sentences.append(cut) |
|
|
133 |
|
|
|
134 |
if len(CoNLL_tokenizer(sent)) < 100: |
|
|
135 |
if sent.strip() == '': |
|
|
136 |
sent = '' |
|
|
137 |
break |
|
|
138 |
else: |
|
|
139 |
sentences.append(sent) |
|
|
140 |
sent = '' |
|
|
141 |
break |
|
|
142 |
else: |
|
|
143 |
sentences.append(sent) |
|
|
144 |
sent = '' |
|
|
145 |
|
|
|
146 |
return sentences |
|
|
147 |
|
|
|
148 |
def get_prob(data, sent_data, predicDict, logitsDict, entity_types=None): |
|
|
149 |
for idx, paper in enumerate(data): |
|
|
150 |
pmid = paper['pmid'] |
|
|
151 |
|
|
|
152 |
if len(paper['abstract']) > 0: |
|
|
153 |
content = paper['title'] + ' ' + paper['abstract'] |
|
|
154 |
else: |
|
|
155 |
content = paper['title'] |
|
|
156 |
|
|
|
157 |
for ent_type in entity_types: |
|
|
158 |
paper['entities'][ent_type] = [] |
|
|
159 |
paper['prob'] = dict() |
|
|
160 |
|
|
|
161 |
for dtype in entity_types: |
|
|
162 |
for sentidx, tags in enumerate(predicDict[dtype][pmid]): |
|
|
163 |
B_flag = False |
|
|
164 |
# get position of entity corresponding to types |
|
|
165 |
for widx, tag in enumerate(tags): |
|
|
166 |
if tag == 'O': |
|
|
167 |
if B_flag: |
|
|
168 |
tmpSE["end"] = \ |
|
|
169 |
sent_data[pmid]['wordPos'][sentidx][widx - 1][1] |
|
|
170 |
paper['entities'][dtype].append(tmpSE) |
|
|
171 |
B_flag = False |
|
|
172 |
continue |
|
|
173 |
elif tag == 'B': |
|
|
174 |
if B_flag: |
|
|
175 |
tmpSE["end"] = \ |
|
|
176 |
sent_data[pmid]['wordPos'][sentidx][widx - 1][1] |
|
|
177 |
paper['entities'][dtype].append(tmpSE) |
|
|
178 |
tmpSE = { |
|
|
179 |
"start": sent_data[pmid]['wordPos'][sentidx][widx][ |
|
|
180 |
0]} |
|
|
181 |
B_flag = True |
|
|
182 |
elif tag == "I": |
|
|
183 |
continue |
|
|
184 |
if B_flag: |
|
|
185 |
tmpSE["end"] = sent_data[pmid]['wordPos'][sentidx][-1][1] |
|
|
186 |
paper['entities'][dtype].append(tmpSE) |
|
|
187 |
|
|
|
188 |
# get prob. of entity logits corresponding to types |
|
|
189 |
logs = list() |
|
|
190 |
for t_sent in logitsDict[dtype][pmid]: |
|
|
191 |
logs.extend(t_sent) |
|
|
192 |
paper['prob'][dtype] = list() |
|
|
193 |
for pos in paper['entities'][dtype]: |
|
|
194 |
if pos['start'] == pos['end']: |
|
|
195 |
soft = softmax(logs[len( |
|
|
196 |
CoNLL_tokenizer(content[:pos['start']])):len( |
|
|
197 |
CoNLL_tokenizer(content[:pos['end']])) + 1]) |
|
|
198 |
paper['prob'][dtype].append( |
|
|
199 |
(pos, float(np.average(soft)))) |
|
|
200 |
else: |
|
|
201 |
soft = softmax(logs[len( |
|
|
202 |
CoNLL_tokenizer(content[:pos['start']])):len( |
|
|
203 |
CoNLL_tokenizer(content[:pos['end']]))]) |
|
|
204 |
paper['prob'][dtype].append( |
|
|
205 |
(pos, float(np.average(soft)))) |
|
|
206 |
|
|
|
207 |
return data |
|
|
208 |
|
|
|
209 |
def detokenize(tokens, predicts, logits): |
|
|
210 |
pred = dict({ |
|
|
211 |
'toks': tokens[:], |
|
|
212 |
'labels': predicts[:], |
|
|
213 |
'logit': logits[:] |
|
|
214 |
}) # dictionary for predicted tokens and labels. |
|
|
215 |
|
|
|
216 |
bert_toks = list() |
|
|
217 |
bert_labels = list() |
|
|
218 |
bert_logits = list() |
|
|
219 |
tmp_p = list() |
|
|
220 |
tmp_l = list() |
|
|
221 |
tmp_s = list() |
|
|
222 |
for t, l, s in zip(pred['toks'], pred['labels'], pred['logit']): |
|
|
223 |
if t == '[CLS]' or t == '<s>': # non-text tokens will not be evaluated. |
|
|
224 |
continue |
|
|
225 |
elif t == '[SEP]' or t == '</s>': # newline |
|
|
226 |
bert_toks.append(tmp_p) |
|
|
227 |
bert_labels.append(tmp_l) |
|
|
228 |
bert_logits.append(tmp_s) |
|
|
229 |
tmp_p = list() |
|
|
230 |
tmp_l = list() |
|
|
231 |
tmp_s = list() |
|
|
232 |
continue |
|
|
233 |
elif t[:2] == '##': # if it is a piece of a word (broken by Word Piece tokenizer) |
|
|
234 |
tmp_p[-1] = tmp_p[-1] + t[2:] # append pieces |
|
|
235 |
elif t.startswith('Ġ'): # roberta tokenizer |
|
|
236 |
t = t.replace('Ġ', ' ') |
|
|
237 |
tmp_p[-1] = tmp_p[-1] + t |
|
|
238 |
else: |
|
|
239 |
tmp_p.append(t) |
|
|
240 |
tmp_l.append(l) |
|
|
241 |
tmp_s.append(s) |
|
|
242 |
return bert_toks, bert_labels, bert_logits |
|
|
243 |
|
|
|
244 |
# https://stackoverflow.com/a/3620972 |
|
|
245 |
PROF_DATA = {} |
|
|
246 |
|
|
|
247 |
class Profile(object): |
|
|
248 |
def __init__(self, prefix): |
|
|
249 |
self.prefix = prefix |
|
|
250 |
|
|
|
251 |
def __call__(self, fn): |
|
|
252 |
def with_profiling(*args, **kwargs): |
|
|
253 |
global PROF_DATA |
|
|
254 |
start_time = time.time() |
|
|
255 |
ret = fn(*args, **kwargs) |
|
|
256 |
|
|
|
257 |
elapsed_time = time.time() - start_time |
|
|
258 |
key = '[' + self.prefix + '].' + fn.__name__ |
|
|
259 |
|
|
|
260 |
if key not in PROF_DATA: |
|
|
261 |
PROF_DATA[key] = [0, list()] |
|
|
262 |
PROF_DATA[key][0] += 1 |
|
|
263 |
PROF_DATA[key][1].append(elapsed_time) |
|
|
264 |
|
|
|
265 |
return ret |
|
|
266 |
|
|
|
267 |
return with_profiling |
|
|
268 |
|
|
|
269 |
def show_prof_data(): |
|
|
270 |
for fname, data in sorted(PROF_DATA.items()): |
|
|
271 |
max_time = max(data[1]) |
|
|
272 |
avg_time = sum(data[1]) / len(data[1]) |
|
|
273 |
total_time = sum(data[1]) |
|
|
274 |
print("\n{} -> called {} times".format(fname, data[0])) |
|
|
275 |
print("Time total: {:.3f}, max: {:.3f}, avg: {:.3f}".format( |
|
|
276 |
total_time, max_time, avg_time)) |
|
|
277 |
|
|
|
278 |
def clear_prof_data(): |
|
|
279 |
global PROF_DATA |
|
|
280 |
PROF_DATA = {} |
|
|
281 |
|
|
|
282 |
# Ref. dict of SR4GN |
|
|
283 |
species_human_excl_homo_sapiens = \ |
|
|
284 |
'person|infant|Child|people|participants|woman|' \ |
|
|
285 |
'Girls|Man|Peoples|Men|Participant|Patients|' \ |
|
|
286 |
'humans|Persons|mans|participant|Infants|Boys|' \ |
|
|
287 |
'Human|Humans|Women|children|Mans|child|Participants|Girl|' \ |
|
|
288 |
'Infant|girl|patient|patients|boys|men|infants|' \ |
|
|
289 |
'man|girls|Children|Boy|women|persons|human|Woman|' \ |
|
|
290 |
'peoples|Patient|People|boy|Person'.split('|') |
|
|
291 |
|
|
|
292 |
def filter_entities(ner_results): |
|
|
293 |
num_filtered_species_per_doc = list() |
|
|
294 |
|
|
|
295 |
for idx, paper in enumerate(ner_results): |
|
|
296 |
|
|
|
297 |
if len(paper['abstract']) > 0: |
|
|
298 |
content = paper['title'] + ' ' + paper['abstract'] |
|
|
299 |
else: |
|
|
300 |
content = paper['title'] |
|
|
301 |
|
|
|
302 |
valid_species = list() |
|
|
303 |
species = paper['entities']['species'] |
|
|
304 |
for spcs in species: |
|
|
305 |
entity_mention = content[spcs['start']:spcs['end']+1] |
|
|
306 |
if entity_mention in species_human_excl_homo_sapiens: |
|
|
307 |
spcs['end'] += 1 |
|
|
308 |
continue |
|
|
309 |
valid_species.append(spcs) |
|
|
310 |
|
|
|
311 |
num_filtered_species = len(species) - len(valid_species) |
|
|
312 |
if num_filtered_species > 0: |
|
|
313 |
paper['entities']['species'] = valid_species |
|
|
314 |
|
|
|
315 |
num_filtered_species_per_doc.append((paper['pmid'], |
|
|
316 |
num_filtered_species)) |
|
|
317 |
|
|
|
318 |
return num_filtered_species_per_doc |
|
|
319 |
|
|
|
320 |
# from convert.py |
|
|
321 |
def pubtator2dict_list(pubtator_file_path): |
|
|
322 |
dict_list = list() |
|
|
323 |
|
|
|
324 |
title_pmid = '' |
|
|
325 |
# abstract_pmid = '' |
|
|
326 |
title = '' |
|
|
327 |
abstract_text = '' |
|
|
328 |
doc_line_num = 0 |
|
|
329 |
|
|
|
330 |
with open(pubtator_file_path, 'r', encoding='utf-8') as f: |
|
|
331 |
for line in f: |
|
|
332 |
line = line.rstrip() |
|
|
333 |
if len(line) == 0: |
|
|
334 |
|
|
|
335 |
doc_dict = { |
|
|
336 |
'pmid': title_pmid, |
|
|
337 |
'entities': {}, |
|
|
338 |
} |
|
|
339 |
doc_dict['title'] = title |
|
|
340 |
doc_dict['abstract'] = abstract_text |
|
|
341 |
|
|
|
342 |
dict_list.append(doc_dict) |
|
|
343 |
|
|
|
344 |
doc_line_num = 0 |
|
|
345 |
continue |
|
|
346 |
|
|
|
347 |
if doc_line_num == 0: |
|
|
348 |
title_cols = line.split('|t|') |
|
|
349 |
|
|
|
350 |
if len(title_cols) != 2: |
|
|
351 |
return '{"error": "wrong #title_cols {}"}'\ |
|
|
352 |
.format(len(title_cols)) |
|
|
353 |
|
|
|
354 |
title_pmid = title_cols[0] |
|
|
355 |
|
|
|
356 |
if '- No text -' == title_cols[1]: |
|
|
357 |
# make tmvar2 results empty |
|
|
358 |
title = '' |
|
|
359 |
else: |
|
|
360 |
title = title_cols[1] |
|
|
361 |
elif doc_line_num == 1: |
|
|
362 |
abstract_cols = line.split('|a|') |
|
|
363 |
|
|
|
364 |
if len(abstract_cols) != 2: |
|
|
365 |
if len(abstract_cols) > 2: |
|
|
366 |
abstract_text = "|a|".join(abstract_cols[1:]) |
|
|
367 |
else: |
|
|
368 |
return '{"error": "wrong #abstract_cols {}"}'.format(len(abstract_cols)) |
|
|
369 |
else: |
|
|
370 |
if '- No text -' == abstract_cols[1]: |
|
|
371 |
# make tmvar2 results empty |
|
|
372 |
abstract_text = '' |
|
|
373 |
else: |
|
|
374 |
abstract_text = abstract_cols[1] |
|
|
375 |
|
|
|
376 |
doc_line_num += 1 |
|
|
377 |
return dict_list |
|
|
378 |
|
|
|
379 |
def preprocess(text): |
|
|
380 |
text = text.replace('\r ', ' ') |
|
|
381 |
|
|
|
382 |
text = text.replace('\u2028', ' ') |
|
|
383 |
text = text.replace('\u2029', ' ') |
|
|
384 |
|
|
|
385 |
# HAIR SPACE |
|
|
386 |
# https://www.fileformat.info/info/unicode/char/200a/index.htm |
|
|
387 |
text = text.replace('\u200A', ' ') |
|
|
388 |
|
|
|
389 |
# THIN SPACE |
|
|
390 |
# https://www.fileformat.info/info/unicode/char/2009/index.htm |
|
|
391 |
text = text.replace('\u2009', ' ') |
|
|
392 |
text = text.replace('\u2008', ' ') |
|
|
393 |
|
|
|
394 |
# FOUR-PER-EM SPACE |
|
|
395 |
# https://www.fileformat.info/info/unicode/char/2005/index.htm |
|
|
396 |
text = text.replace('\u2005', ' ') |
|
|
397 |
text = text.replace('\u2004', ' ') |
|
|
398 |
text = text.replace('\u2003', ' ') |
|
|
399 |
|
|
|
400 |
# EN SPACE |
|
|
401 |
# https://www.fileformat.info/info/unicode/char/2002/index.htm |
|
|
402 |
text = text.replace('\u2002', ' ') |
|
|
403 |
|
|
|
404 |
# NO-BREAK SPACE |
|
|
405 |
# https://www.fileformat.info/info/unicode/char/00a0/index.htm |
|
|
406 |
text = text.replace('\u00A0', ' ') |
|
|
407 |
|
|
|
408 |
# https://www.fileformat.info/info/unicode/char/f8ff/index.htm |
|
|
409 |
text = text.replace('\uF8FF', ' ') |
|
|
410 |
|
|
|
411 |
# https://www.fileformat.info/info/unicode/char/202f/index.htm |
|
|
412 |
text = text.replace('\u202F', ' ') |
|
|
413 |
|
|
|
414 |
text = text.replace('\uFEFF', ' ') |
|
|
415 |
text = text.replace('\uF044', ' ') |
|
|
416 |
text = text.replace('\uF02D', ' ') |
|
|
417 |
text = text.replace('\uF0BB', ' ') |
|
|
418 |
|
|
|
419 |
text = text.replace('\uF048', 'Η') |
|
|
420 |
text = text.replace('\uF0B0', '°') |
|
|
421 |
|
|
|
422 |
# MIDLINE HORIZONTAL ELLIPSIS: ⋯ |
|
|
423 |
# https://www.fileformat.info/info/unicode/char/22ef/index.htm |
|
|
424 |
# text = text.replace('\u22EF', '...') |
|
|
425 |
|
|
|
426 |
return text |