|
a |
|
b/src/Parser/models.py |
|
|
1 |
# coding=utf-8 |
|
|
2 |
import os |
|
|
3 |
import pdb |
|
|
4 |
import copy |
|
|
5 |
import torch |
|
|
6 |
import torch.nn.functional as F |
|
|
7 |
from torch import nn |
|
|
8 |
|
|
|
9 |
from torch.nn import CrossEntropyLoss |
|
|
10 |
from transformers import ( |
|
|
11 |
BertConfig, |
|
|
12 |
BertModel, |
|
|
13 |
RobertaModel, |
|
|
14 |
BertForTokenClassification, |
|
|
15 |
BertTokenizer, |
|
|
16 |
RobertaConfig, |
|
|
17 |
RobertaForTokenClassification, |
|
|
18 |
RobertaTokenizer, |
|
|
19 |
AutoTokenizer, |
|
|
20 |
) |
|
|
21 |
|
|
|
22 |
class BERTMultiNER2(BertForTokenClassification): |
|
|
23 |
def __init__(self, config, num_labels=3): |
|
|
24 |
super(BERTMultiNER2, self).__init__(config) |
|
|
25 |
self.num_labels = num_labels |
|
|
26 |
self.bert = BertModel(config) |
|
|
27 |
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob) |
|
|
28 |
|
|
|
29 |
self.dise_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # disease |
|
|
30 |
self.chem_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # chemical |
|
|
31 |
self.gene_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # gene/protein |
|
|
32 |
self.spec_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # species |
|
|
33 |
self.cellline_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # cell line |
|
|
34 |
self.dna_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # dna |
|
|
35 |
self.rna_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # rna |
|
|
36 |
self.celltype_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # cell type |
|
|
37 |
|
|
|
38 |
# self.biological_structure_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # biological structure |
|
|
39 |
# self.diagnostic_procedure_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # diagnostic procedure |
|
|
40 |
# self.duration_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # duration |
|
|
41 |
# self.date_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # date |
|
|
42 |
# self.therapeutic_procedure_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # therapeutic procedure |
|
|
43 |
# self.sign_symptom_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # sign/symptom |
|
|
44 |
# self.lab_value_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # lab value |
|
|
45 |
|
|
|
46 |
|
|
|
47 |
self.dise_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
48 |
self.chem_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
49 |
self.gene_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
50 |
self.spec_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
51 |
self.cellline_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
52 |
self.dna_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
53 |
self.rna_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
54 |
self.celltype_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
55 |
|
|
|
56 |
# self.biological_structure_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
57 |
# self.diagnostic_procedure_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
58 |
# self.duration_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
59 |
# self.date_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
60 |
# self.therapeutic_procedure_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
61 |
# self.sign_symptom_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
62 |
# self.lab_value_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
63 |
|
|
|
64 |
self.init_weights() |
|
|
65 |
|
|
|
66 |
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, entity_type_ids=None): |
|
|
67 |
sequence_output = self.bert(input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, head_mask=None)[0] |
|
|
68 |
batch_size,max_len,feat_dim = sequence_output.shape |
|
|
69 |
sequence_output = self.dropout(sequence_output) |
|
|
70 |
|
|
|
71 |
if entity_type_ids[0][0].item() == 0: |
|
|
72 |
''' |
|
|
73 |
Raw text data with trained parameters |
|
|
74 |
''' |
|
|
75 |
dise_sequence_output = F.relu(self.dise_classifier_2(sequence_output)) # disease logit value |
|
|
76 |
chem_sequence_output = F.relu(self.chem_classifier_2(sequence_output)) # chemical logit value |
|
|
77 |
gene_sequence_output = F.relu(self.gene_classifier_2(sequence_output)) # gene/protein logit value |
|
|
78 |
spec_sequence_output = F.relu(self.spec_classifier_2(sequence_output)) # species logit value |
|
|
79 |
cellline_sequence_output = F.relu(self.cellline_classifier_2(sequence_output)) # cell line logit value |
|
|
80 |
dna_sequence_output = F.relu(self.dna_classifier_2(sequence_output)) # dna logit value |
|
|
81 |
rna_sequence_output = F.relu(self.rna_classifier_2(sequence_output)) # rna logit value |
|
|
82 |
celltype_sequence_output = F.relu(self.celltype_classifier_2(sequence_output)) # cell type logit value |
|
|
83 |
|
|
|
84 |
# biological_structure_sequence_output = F.relu(self.biological_structure_classifier_2(sequence_output)) # biological structure logit value |
|
|
85 |
# diagnostic_procedure_sequence_output = F.relu(self.diagnostic_procedure_classifier_2(sequence_output)) # diagnostic procedure logit value |
|
|
86 |
# duration_sequence_output = F.relu(self.duration_classifier_2(sequence_output)) # duration logit value |
|
|
87 |
# date_sequence_output = F.relu(self.date_classifier_2(sequence_output)) # date logit value |
|
|
88 |
# therapeutic_procedure_sequence_output = F.relu(self.therapeutic_procedure_classifier_2(sequence_output)) # therapeutic procedure logit value |
|
|
89 |
# sign_symptom_sequence_output = F.relu(self.sign_symptom_classifier_2(sequence_output)) # sign/symptom logit value |
|
|
90 |
# lab_value_sequence_output = F.relu(self.lab_value_classifier_2(sequence_output)) # lab value logit value |
|
|
91 |
|
|
|
92 |
|
|
|
93 |
dise_logits = self.dise_classifier(dise_sequence_output) # disease logit value |
|
|
94 |
chem_logits = self.chem_classifier(chem_sequence_output) # chemical logit value |
|
|
95 |
gene_logits = self.gene_classifier(gene_sequence_output) # gene/protein logit value |
|
|
96 |
spec_logits = self.spec_classifier(spec_sequence_output) # species logit value |
|
|
97 |
cellline_logits = self.cellline_classifier(cellline_sequence_output) # cell line logit value |
|
|
98 |
dna_logits = self.dna_classifier(dna_sequence_output) # dna logit value |
|
|
99 |
rna_logits = self.rna_classifier(rna_sequence_output) # rna logit value |
|
|
100 |
celltype_logits = self.celltype_classifier(celltype_sequence_output) # cell type logit value |
|
|
101 |
|
|
|
102 |
# biological_logits = self.biological_structure_classifier(biological_structure_sequence_output) # biological structure logit value |
|
|
103 |
# diagnostic_logits = self.diagnostic_procedure_classifier(diagnostic_procedure_sequence_output) # diagnostic procedure logit value |
|
|
104 |
# duration_logits = self.duration_classifier(duration_sequence_output) # duration logit value |
|
|
105 |
# date_logits = self.date_classifier(date_sequence_output) # date logit value |
|
|
106 |
# therapeutic_logits = self.therapeutic_procedure_classifier(therapeutic_procedure_sequence_output) # therapeutic procedure logit value |
|
|
107 |
# sign_symptom_logits = self.sign_symptom_classifier(sign_symptom_sequence_output) # sign/symptom logit value |
|
|
108 |
# lab_value_logits = self.lab_value_classifier(lab_value_sequence_output) # lab value logit value |
|
|
109 |
|
|
|
110 |
|
|
|
111 |
|
|
|
112 |
# update logit and sequence_output |
|
|
113 |
sequence_output = dise_sequence_output + chem_sequence_output + gene_sequence_output + spec_sequence_output + cellline_sequence_output + dna_sequence_output + rna_sequence_output + celltype_sequence_output |
|
|
114 |
# + \ |
|
|
115 |
# biological_structure_sequence_output + diagnostic_procedure_sequence_output + duration_sequence_output + date_sequence_output + \ |
|
|
116 |
# therapeutic_procedure_sequence_output + sign_symptom_sequence_output + lab_value_sequence_output |
|
|
117 |
|
|
|
118 |
logits = (dise_logits, chem_logits, gene_logits, spec_logits, cellline_logits, |
|
|
119 |
dna_logits, rna_logits, celltype_logits) |
|
|
120 |
# biological_logits, diagnostic_logits, |
|
|
121 |
# duration_logits, date_logits, therapeutic_logits, |
|
|
122 |
# sign_symptom_logits, lab_value_logits) |
|
|
123 |
else: |
|
|
124 |
''' |
|
|
125 |
Train, Eval, Test with pre-defined entity type tags |
|
|
126 |
''' |
|
|
127 |
# make 1*1 conv to adopt entity type |
|
|
128 |
dise_idx = copy.deepcopy(entity_type_ids) |
|
|
129 |
chem_idx = copy.deepcopy(entity_type_ids) |
|
|
130 |
gene_idx = copy.deepcopy(entity_type_ids) |
|
|
131 |
spec_idx = copy.deepcopy(entity_type_ids) |
|
|
132 |
cellline_idx = copy.deepcopy(entity_type_ids) |
|
|
133 |
dna_idx = copy.deepcopy(entity_type_ids) |
|
|
134 |
rna_idx = copy.deepcopy(entity_type_ids) |
|
|
135 |
celltype_idx = copy.deepcopy(entity_type_ids) |
|
|
136 |
|
|
|
137 |
# biological_idx = copy.deepcopy(entity_type_ids) |
|
|
138 |
# diagnostic_idx = copy.deepcopy(entity_type_ids) |
|
|
139 |
# duration_idx = copy.deepcopy(entity_type_ids) |
|
|
140 |
# date_idx = copy.deepcopy(entity_type_ids) |
|
|
141 |
# therapeutic_idx = copy.deepcopy(entity_type_ids) |
|
|
142 |
# sign_symptom_idx = copy.deepcopy(entity_type_ids) |
|
|
143 |
# lab_value_idx = copy.deepcopy(entity_type_ids) |
|
|
144 |
|
|
|
145 |
|
|
|
146 |
|
|
|
147 |
dise_idx[dise_idx != 1] = 0 |
|
|
148 |
chem_idx[chem_idx != 2] = 0 |
|
|
149 |
gene_idx[gene_idx != 3] = 0 |
|
|
150 |
spec_idx[spec_idx != 4] = 0 |
|
|
151 |
cellline_idx[cellline_idx != 5] = 0 |
|
|
152 |
dna_idx[dna_idx != 6] = 0 |
|
|
153 |
rna_idx[rna_idx != 7] = 0 |
|
|
154 |
celltype_idx[celltype_idx != 8] = 0 |
|
|
155 |
# biological_idx[biological_idx != 9] = 0 |
|
|
156 |
# diagnostic_idx[diagnostic_idx != 10] = 0 |
|
|
157 |
# duration_idx[duration_idx != 11] = 0 |
|
|
158 |
# date_idx[date_idx != 12] = 0 |
|
|
159 |
# therapeutic_idx[therapeutic_idx != 13] = 0 |
|
|
160 |
# sign_symptom_idx[sign_symptom_idx != 14] = 0 |
|
|
161 |
# lab_value_idx[lab_value_idx != 15] = 0 |
|
|
162 |
|
|
|
163 |
dise_sequence_output = dise_idx.unsqueeze(-1) * sequence_output |
|
|
164 |
chem_sequence_output = chem_idx.unsqueeze(-1) * sequence_output |
|
|
165 |
gene_sequence_output = gene_idx.unsqueeze(-1) * sequence_output |
|
|
166 |
spec_sequence_output = spec_idx.unsqueeze(-1) * sequence_output |
|
|
167 |
cellline_sequence_output = cellline_idx.unsqueeze(-1) * sequence_output |
|
|
168 |
dna_sequence_output = dna_idx.unsqueeze(-1) * sequence_output |
|
|
169 |
rna_sequence_output = rna_idx.unsqueeze(-1) * sequence_output |
|
|
170 |
celltype_sequence_output = celltype_idx.unsqueeze(-1) * sequence_output |
|
|
171 |
# biological_structure_sequence_output = biological_idx.unsqueeze(-1) * sequence_output |
|
|
172 |
# diagnostic_procedure_sequence_output = diagnostic_idx.unsqueeze(-1) * sequence_output |
|
|
173 |
# duration_sequence_output = duration_idx.unsqueeze(-1) * sequence_output |
|
|
174 |
# date_sequence_output = date_idx.unsqueeze(-1) * sequence_output |
|
|
175 |
# therapeutic_procedure_sequence_output = therapeutic_idx.unsqueeze(-1) * sequence_output |
|
|
176 |
# sign_symptom_sequence_output = sign_symptom_idx.unsqueeze(-1) * sequence_output |
|
|
177 |
# lab_value_sequence_output = lab_value_idx.unsqueeze(-1) * sequence_output |
|
|
178 |
|
|
|
179 |
|
|
|
180 |
# F.tanh or F.relu |
|
|
181 |
dise_sequence_output = F.relu(self.dise_classifier_2(dise_sequence_output)) # disease logit value |
|
|
182 |
chem_sequence_output = F.relu(self.chem_classifier_2(chem_sequence_output)) # chemical logit value |
|
|
183 |
gene_sequence_output = F.relu(self.gene_classifier_2(gene_sequence_output)) # gene/protein logit value |
|
|
184 |
spec_sequence_output = F.relu(self.spec_classifier_2(spec_sequence_output)) # species logit value |
|
|
185 |
cellline_sequence_output = F.relu(self.cellline_classifier_2(cellline_sequence_output)) # cell line logit value |
|
|
186 |
dna_sequence_output = F.relu(self.dna_classifier_2(dna_sequence_output)) # dna logit value |
|
|
187 |
rna_sequence_output = F.relu(self.rna_classifier_2(rna_sequence_output)) # rna logit value |
|
|
188 |
celltype_sequence_output = F.relu(self.celltype_classifier_2(celltype_sequence_output)) # cell type logit value |
|
|
189 |
|
|
|
190 |
# biological_structure_sequence_output = F.relu(self.biological_structure_classifier_2(biological_structure_sequence_output)) # biological structure logit value |
|
|
191 |
# diagnostic_procedure_sequence_output = F.relu(self.diagnostic_procedure_classifier_2(diagnostic_procedure_sequence_output)) # diagnostic procedure logit value |
|
|
192 |
# duration_sequence_output = F.relu(self.duration_classifier_2(duration_sequence_output)) # duration logit value |
|
|
193 |
# date_sequence_output = F.relu(self.date_classifier_2(date_sequence_output)) # date logit value |
|
|
194 |
# therapeutic_procedure_sequence_output = F.relu(self.therapeutic_procedure_classifier_2(therapeutic_procedure_sequence_output)) # therapeutic procedure logit value |
|
|
195 |
# sign_symptom_sequence_output = F.relu(self.sign_symptom_classifier_2(sign_symptom_sequence_output)) # sign/symptom logit value |
|
|
196 |
# lab_value_sequence_output = F.relu(self.lab_value_classifier_2(lab_value_sequence_output)) # lab value logit value |
|
|
197 |
|
|
|
198 |
|
|
|
199 |
|
|
|
200 |
dise_logits = self.dise_classifier(dise_sequence_output) # disease logit value |
|
|
201 |
chem_logits = self.chem_classifier(chem_sequence_output) # chemical logit value |
|
|
202 |
gene_logits = self.gene_classifier(gene_sequence_output) # gene/protein logit value |
|
|
203 |
spec_logits = self.spec_classifier(spec_sequence_output) # species logit value |
|
|
204 |
cellline_logits = self.cellline_classifier(cellline_sequence_output) # cell line logit value |
|
|
205 |
dna_logits = self.dna_classifier(dna_sequence_output) # dna logit value |
|
|
206 |
rna_logits = self.rna_classifier(rna_sequence_output) # rna logit value |
|
|
207 |
celltype_logits = self.celltype_classifier(celltype_sequence_output) # cell type logit value |
|
|
208 |
# biological_logits = self.biological_structure_classifier(biological_structure_sequence_output) # biological structure logit value |
|
|
209 |
# diagnostic_logits = self.diagnostic_procedure_classifier(diagnostic_procedure_sequence_output) # diagnostic procedure logit value |
|
|
210 |
# duration_logits = self.duration_classifier(duration_sequence_output) # duration logit value |
|
|
211 |
# date_logits = self.date_classifier(date_sequence_output) |
|
|
212 |
# therapeutic_logits = self.therapeutic_procedure_classifier(therapeutic_procedure_sequence_output) # therapeutic procedure logit value |
|
|
213 |
# sign_symptom_logits = self.sign_symptom_classifier(sign_symptom_sequence_output) # sign/symptom logit value |
|
|
214 |
# lab_value_logits = self.lab_value_classifier(lab_value_sequence_output) # lab value logit value |
|
|
215 |
|
|
|
216 |
|
|
|
217 |
|
|
|
218 |
# update logit and sequence_output |
|
|
219 |
sequence_output =dise_sequence_output + chem_sequence_output + gene_sequence_output + spec_sequence_output + cellline_sequence_output + dna_sequence_output + rna_sequence_output + celltype_sequence_output |
|
|
220 |
# \ |
|
|
221 |
# + biological_structure_sequence_output + diagnostic_procedure_sequence_output + duration_sequence_output + date_sequence_output \ |
|
|
222 |
# + therapeutic_procedure_sequence_output + sign_symptom_sequence_output + lab_value_sequence_output |
|
|
223 |
|
|
|
224 |
logits = dise_logits + chem_logits + gene_logits + spec_logits + cellline_logits \ |
|
|
225 |
+ dna_logits + rna_logits + celltype_logits |
|
|
226 |
# + biological_logits \ |
|
|
227 |
# + diagnostic_logits + duration_logits + date_logits + therapeutic_logits \ |
|
|
228 |
# + sign_symptom_logits + lab_value_logits |
|
|
229 |
|
|
|
230 |
|
|
|
231 |
outputs = (logits, sequence_output) |
|
|
232 |
if labels is not None: |
|
|
233 |
loss_fct = CrossEntropyLoss() |
|
|
234 |
# Only keep active parts of the loss |
|
|
235 |
if attention_mask is not None: |
|
|
236 |
if entity_type_ids[0][0].item() == 0: |
|
|
237 |
active_loss = attention_mask.view(-1) == 1 |
|
|
238 |
dise_logits, chem_logits, gene_logits, spec_logits, cellline_logits, \ |
|
|
239 |
dna_logits, rna_logits, celltype_logits = logits |
|
|
240 |
|
|
|
241 |
# biological_logits, diagnostic_logits, \ |
|
|
242 |
# duration_logits, date_logits, therapeutic_logits, \ |
|
|
243 |
# sign_symptom_logits, lab_value_logits |
|
|
244 |
|
|
|
245 |
|
|
|
246 |
active_dise_logits = dise_logits.view(-1, self.num_labels) |
|
|
247 |
active_chem_logits = chem_logits.view(-1, self.num_labels) |
|
|
248 |
active_gene_logits = gene_logits.view(-1, self.num_labels) |
|
|
249 |
active_spec_logits = spec_logits.view(-1, self.num_labels) |
|
|
250 |
active_cellline_logits = cellline_logits.view(-1, self.num_labels) |
|
|
251 |
active_dna_logits = dna_logits.view(-1, self.num_labels) |
|
|
252 |
active_rna_logits = rna_logits.view(-1, self.num_labels) |
|
|
253 |
active_celltype_logits = celltype_logits.view(-1, self.num_labels) |
|
|
254 |
# active_biological_logits = biological_logits.view(-1, self.num_labels) |
|
|
255 |
# active_diagnostic_logits = diagnostic_logits.view(-1, self.num_labels) |
|
|
256 |
# active_duration_logits = duration_logits.view(-1, self.num_labels) |
|
|
257 |
# active_date_logits = date_logits.view(-1, self.num_labels) |
|
|
258 |
# active_therapeutic_logits = therapeutic_logits.view(-1, self.num_labels) |
|
|
259 |
# active_sign_symptom_logits = sign_symptom_logits.view(-1, self.num_labels) |
|
|
260 |
# active_lab_value_logits = lab_value_logits.view(-1, self.num_labels) |
|
|
261 |
|
|
|
262 |
|
|
|
263 |
active_labels = torch.where( |
|
|
264 |
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) |
|
|
265 |
) |
|
|
266 |
dise_loss = loss_fct(active_dise_logits, active_labels) |
|
|
267 |
chem_loss = loss_fct(active_chem_logits, active_labels) |
|
|
268 |
gene_loss = loss_fct(active_gene_logits, active_labels) |
|
|
269 |
spec_loss = loss_fct(active_spec_logits, active_labels) |
|
|
270 |
cellline_loss = loss_fct(active_cellline_logits, active_labels) |
|
|
271 |
dna_loss = loss_fct(active_dna_logits, active_labels) |
|
|
272 |
rna_loss = loss_fct(active_rna_logits, active_labels) |
|
|
273 |
celltype_loss = loss_fct(active_celltype_logits, active_labels) |
|
|
274 |
# biological_loss = loss_fct(active_biological_logits, active_labels) |
|
|
275 |
# diagnostic_loss = loss_fct(active_diagnostic_logits, active_labels) |
|
|
276 |
# duration_loss = loss_fct(active_duration_logits, active_labels) |
|
|
277 |
# date_loss = loss_fct(active_date_logits, active_labels) |
|
|
278 |
# therapeutic_loss = loss_fct(active_therapeutic_logits, active_labels) |
|
|
279 |
# sign_symptom_loss = loss_fct(active_sign_symptom_logits, active_labels) |
|
|
280 |
# lab_value_loss = loss_fct(active_lab_value_logits, active_labels) |
|
|
281 |
|
|
|
282 |
loss = dise_loss + chem_loss + gene_loss + spec_loss + cellline_loss + dna_loss + rna_loss + celltype_loss |
|
|
283 |
# \ |
|
|
284 |
# + biological_loss + diagnostic_loss \ |
|
|
285 |
# + duration_loss + date_loss + therapeutic_loss + sign_symptom_loss + lab_value_loss |
|
|
286 |
|
|
|
287 |
return ((loss,) + outputs) |
|
|
288 |
else: |
|
|
289 |
active_loss = attention_mask.view(-1) == 1 |
|
|
290 |
active_logits = logits.view(-1, self.num_labels) |
|
|
291 |
active_labels = torch.where( |
|
|
292 |
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) |
|
|
293 |
) |
|
|
294 |
loss = loss_fct(active_logits, active_labels) |
|
|
295 |
return ((loss,) + outputs) |
|
|
296 |
else: |
|
|
297 |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
298 |
return loss |
|
|
299 |
else: |
|
|
300 |
return logits |
|
|
301 |
|
|
|
302 |
class RoBERTaMultiNER2(RobertaForTokenClassification): |
|
|
303 |
def __init__(self, config, num_labels=3): |
|
|
304 |
super(RoBERTaMultiNER2, self).__init__(config) |
|
|
305 |
self.num_labels = num_labels |
|
|
306 |
self.roberta = RobertaModel(config) |
|
|
307 |
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob) |
|
|
308 |
|
|
|
309 |
self.dise_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # disease |
|
|
310 |
self.chem_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # chemical |
|
|
311 |
self.gene_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # gene/protein |
|
|
312 |
self.spec_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # species |
|
|
313 |
self.cellline_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # cell line |
|
|
314 |
self.dna_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # dna |
|
|
315 |
self.rna_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # rna |
|
|
316 |
self.celltype_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # cell type |
|
|
317 |
|
|
|
318 |
# self.biological_structure_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # biological structure |
|
|
319 |
# self.diagnostic_procedure_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # diagnostic procedure |
|
|
320 |
# self.duration_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # duration |
|
|
321 |
# self.date_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # date |
|
|
322 |
# self.therapeutic_procedure_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # therapeutic procedure |
|
|
323 |
# self.sign_symptom_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # sign/symptom |
|
|
324 |
# self.lab_value_classifier = torch.nn.Linear(config.hidden_size, self.num_labels) # lab value |
|
|
325 |
|
|
|
326 |
|
|
|
327 |
self.dise_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
328 |
self.chem_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
329 |
self.gene_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
330 |
self.spec_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
331 |
self.cellline_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
332 |
self.dna_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
333 |
self.rna_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
334 |
self.celltype_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
335 |
|
|
|
336 |
# self.biological_structure_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
337 |
# self.diagnostic_procedure_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
338 |
# self.duration_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
339 |
# self.date_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
340 |
# self.therapeutic_procedure_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
341 |
# self.sign_symptom_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
342 |
# self.lab_value_classifier_2 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
343 |
|
|
|
344 |
self.init_weights() |
|
|
345 |
|
|
|
346 |
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, entity_type_ids=None): |
|
|
347 |
sequence_output = self.roberta(input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, head_mask=None)[0] |
|
|
348 |
batch_size,max_len,feat_dim = sequence_output.shape |
|
|
349 |
sequence_output = self.dropout(sequence_output) |
|
|
350 |
|
|
|
351 |
if entity_type_ids[0][0].item() == 0: |
|
|
352 |
''' |
|
|
353 |
Raw text data with trained parameters |
|
|
354 |
''' |
|
|
355 |
dise_sequence_output = F.relu(self.dise_classifier_2(sequence_output)) # disease logit value |
|
|
356 |
chem_sequence_output = F.relu(self.chem_classifier_2(sequence_output)) # chemical logit value |
|
|
357 |
gene_sequence_output = F.relu(self.gene_classifier_2(sequence_output)) # gene/protein logit value |
|
|
358 |
spec_sequence_output = F.relu(self.spec_classifier_2(sequence_output)) # species logit value |
|
|
359 |
cellline_sequence_output = F.relu(self.cellline_classifier_2(sequence_output)) # cell line logit value |
|
|
360 |
dna_sequence_output = F.relu(self.dna_classifier_2(sequence_output)) # dna logit value |
|
|
361 |
rna_sequence_output = F.relu(self.rna_classifier_2(sequence_output)) # rna logit value |
|
|
362 |
celltype_sequence_output = F.relu(self.celltype_classifier_2(sequence_output)) # cell type logit value |
|
|
363 |
|
|
|
364 |
# biological_structure_sequence_output = F.relu(self.biological_structure_classifier_2(sequence_output)) # biological structure logit value |
|
|
365 |
# diagnostic_procedure_sequence_output = F.relu(self.diagnostic_procedure_classifier_2(sequence_output)) # diagnostic procedure logit value |
|
|
366 |
# duration_sequence_output = F.relu(self.duration_classifier_2(sequence_output)) # duration logit value |
|
|
367 |
# date_sequence_output = F.relu(self.date_classifier_2(sequence_output)) # date logit value |
|
|
368 |
# therapeutic_procedure_sequence_output = F.relu(self.therapeutic_procedure_classifier_2(sequence_output)) # therapeutic procedure logit value |
|
|
369 |
# sign_symptom_sequence_output = F.relu(self.sign_symptom_classifier_2(sequence_output)) # sign/symptom logit value |
|
|
370 |
# lab_value_sequence_output = F.relu(self.lab_value_classifier_2(sequence_output)) # lab value logit value |
|
|
371 |
|
|
|
372 |
|
|
|
373 |
dise_logits = self.dise_classifier(dise_sequence_output) # disease logit value |
|
|
374 |
chem_logits = self.chem_classifier(chem_sequence_output) # chemical logit value |
|
|
375 |
gene_logits = self.gene_classifier(gene_sequence_output) # gene/protein logit value |
|
|
376 |
spec_logits = self.spec_classifier(spec_sequence_output) # species logit value |
|
|
377 |
cellline_logits = self.cellline_classifier(cellline_sequence_output) # cell line logit value |
|
|
378 |
dna_logits = self.dna_classifier(dna_sequence_output) # dna logit value |
|
|
379 |
rna_logits = self.rna_classifier(rna_sequence_output) # rna logit value |
|
|
380 |
celltype_logits = self.celltype_classifier(celltype_sequence_output) # cell type logit value |
|
|
381 |
|
|
|
382 |
# biological_logits = self.biological_structure_classifier(biological_structure_sequence_output) # biological structure logit value |
|
|
383 |
# diagnostic_logits = self.diagnostic_procedure_classifier(diagnostic_procedure_sequence_output) # diagnostic procedure logit value |
|
|
384 |
# duration_logits = self.duration_classifier(duration_sequence_output) # duration logit value |
|
|
385 |
# date_logits = self.date_classifier(date_sequence_output) # date logit value |
|
|
386 |
# therapeutic_logits = self.therapeutic_procedure_classifier(therapeutic_procedure_sequence_output) # therapeutic procedure logit value |
|
|
387 |
# sign_symptom_logits = self.sign_symptom_classifier(sign_symptom_sequence_output) # sign/symptom logit value |
|
|
388 |
# lab_value_logits = self.lab_value_classifier(lab_value_sequence_output) # lab value logit value |
|
|
389 |
|
|
|
390 |
|
|
|
391 |
|
|
|
392 |
# update logit and sequence_output |
|
|
393 |
sequence_output = dise_sequence_output + chem_sequence_output + gene_sequence_output + spec_sequence_output + cellline_sequence_output + dna_sequence_output + rna_sequence_output + celltype_sequence_output |
|
|
394 |
# + \ |
|
|
395 |
# biological_structure_sequence_output + diagnostic_procedure_sequence_output + duration_sequence_output + date_sequence_output + \ |
|
|
396 |
# therapeutic_procedure_sequence_output + sign_symptom_sequence_output + lab_value_sequence_output |
|
|
397 |
|
|
|
398 |
logits = (dise_logits, chem_logits, gene_logits, spec_logits, cellline_logits, |
|
|
399 |
dna_logits, rna_logits, celltype_logits) |
|
|
400 |
# biological_logits, diagnostic_logits, |
|
|
401 |
# duration_logits, date_logits, therapeutic_logits, |
|
|
402 |
# sign_symptom_logits, lab_value_logits) |
|
|
403 |
else: |
|
|
404 |
''' |
|
|
405 |
Train, Eval, Test with pre-defined entity type tags |
|
|
406 |
''' |
|
|
407 |
# make 1*1 conv to adopt entity type |
|
|
408 |
dise_idx = copy.deepcopy(entity_type_ids) |
|
|
409 |
chem_idx = copy.deepcopy(entity_type_ids) |
|
|
410 |
gene_idx = copy.deepcopy(entity_type_ids) |
|
|
411 |
spec_idx = copy.deepcopy(entity_type_ids) |
|
|
412 |
cellline_idx = copy.deepcopy(entity_type_ids) |
|
|
413 |
dna_idx = copy.deepcopy(entity_type_ids) |
|
|
414 |
rna_idx = copy.deepcopy(entity_type_ids) |
|
|
415 |
celltype_idx = copy.deepcopy(entity_type_ids) |
|
|
416 |
|
|
|
417 |
# biological_idx = copy.deepcopy(entity_type_ids) |
|
|
418 |
# diagnostic_idx = copy.deepcopy(entity_type_ids) |
|
|
419 |
# duration_idx = copy.deepcopy(entity_type_ids) |
|
|
420 |
# date_idx = copy.deepcopy(entity_type_ids) |
|
|
421 |
# therapeutic_idx = copy.deepcopy(entity_type_ids) |
|
|
422 |
# sign_symptom_idx = copy.deepcopy(entity_type_ids) |
|
|
423 |
# lab_value_idx = copy.deepcopy(entity_type_ids) |
|
|
424 |
|
|
|
425 |
|
|
|
426 |
|
|
|
427 |
dise_idx[dise_idx != 1] = 0 |
|
|
428 |
chem_idx[chem_idx != 2] = 0 |
|
|
429 |
gene_idx[gene_idx != 3] = 0 |
|
|
430 |
spec_idx[spec_idx != 4] = 0 |
|
|
431 |
cellline_idx[cellline_idx != 5] = 0 |
|
|
432 |
dna_idx[dna_idx != 6] = 0 |
|
|
433 |
rna_idx[rna_idx != 7] = 0 |
|
|
434 |
celltype_idx[celltype_idx != 8] = 0 |
|
|
435 |
# biological_idx[biological_idx != 9] = 0 |
|
|
436 |
# diagnostic_idx[diagnostic_idx != 10] = 0 |
|
|
437 |
# duration_idx[duration_idx != 11] = 0 |
|
|
438 |
# date_idx[date_idx != 12] = 0 |
|
|
439 |
# therapeutic_idx[therapeutic_idx != 13] = 0 |
|
|
440 |
# sign_symptom_idx[sign_symptom_idx != 14] = 0 |
|
|
441 |
# lab_value_idx[lab_value_idx != 15] = 0 |
|
|
442 |
|
|
|
443 |
|
|
|
444 |
dise_sequence_output = dise_idx.unsqueeze(-1) * sequence_output |
|
|
445 |
chem_sequence_output = chem_idx.unsqueeze(-1) * sequence_output |
|
|
446 |
gene_sequence_output = gene_idx.unsqueeze(-1) * sequence_output |
|
|
447 |
spec_sequence_output = spec_idx.unsqueeze(-1) * sequence_output |
|
|
448 |
cellline_sequence_output = cellline_idx.unsqueeze(-1) * sequence_output |
|
|
449 |
dna_sequence_output = dna_idx.unsqueeze(-1) * sequence_output |
|
|
450 |
rna_sequence_output = rna_idx.unsqueeze(-1) * sequence_output |
|
|
451 |
celltype_sequence_output = celltype_idx.unsqueeze(-1) * sequence_output |
|
|
452 |
# biological_structure_sequence_output = biological_idx.unsqueeze(-1) * sequence_output |
|
|
453 |
# diagnostic_procedure_sequence_output = diagnostic_idx.unsqueeze(-1) * sequence_output |
|
|
454 |
# duration_sequence_output = duration_idx.unsqueeze(-1) * sequence_output |
|
|
455 |
# date_sequence_output = date_idx.unsqueeze(-1) * sequence_output |
|
|
456 |
# therapeutic_procedure_sequence_output = therapeutic_idx.unsqueeze(-1) * sequence_output |
|
|
457 |
# sign_symptom_sequence_output = sign_symptom_idx.unsqueeze(-1) * sequence_output |
|
|
458 |
# lab_value_sequence_output = lab_value_idx.unsqueeze(-1) * sequence_output |
|
|
459 |
|
|
|
460 |
|
|
|
461 |
# F.tanh or F.relu |
|
|
462 |
dise_sequence_output = F.relu(self.dise_classifier_2(dise_sequence_output)) # disease logit value |
|
|
463 |
chem_sequence_output = F.relu(self.chem_classifier_2(chem_sequence_output)) # chemical logit value |
|
|
464 |
gene_sequence_output = F.relu(self.gene_classifier_2(gene_sequence_output)) # gene/protein logit value |
|
|
465 |
spec_sequence_output = F.relu(self.spec_classifier_2(spec_sequence_output)) # species logit value |
|
|
466 |
cellline_sequence_output = F.relu(self.cellline_classifier_2(cellline_sequence_output)) # cell line logit value |
|
|
467 |
dna_sequence_output = F.relu(self.dna_classifier_2(dna_sequence_output)) # dna logit value |
|
|
468 |
rna_sequence_output = F.relu(self.rna_classifier_2(rna_sequence_output)) # rna logit value |
|
|
469 |
celltype_sequence_output = F.relu(self.celltype_classifier_2(celltype_sequence_output)) # cell type logit value |
|
|
470 |
|
|
|
471 |
# biological_structure_sequence_output = F.relu(self.biological_structure_classifier_2(biological_structure_sequence_output)) # biological structure logit value |
|
|
472 |
# diagnostic_procedure_sequence_output = F.relu(self.diagnostic_procedure_classifier_2(diagnostic_procedure_sequence_output)) # diagnostic procedure logit value |
|
|
473 |
# duration_sequence_output = F.relu(self.duration_classifier_2(duration_sequence_output)) # duration logit value |
|
|
474 |
# date_sequence_output = F.relu(self.date_classifier_2(date_sequence_output)) # date logit value |
|
|
475 |
# therapeutic_procedure_sequence_output = F.relu(self.therapeutic_procedure_classifier_2(therapeutic_procedure_sequence_output)) # therapeutic procedure logit value |
|
|
476 |
# sign_symptom_sequence_output = F.relu(self.sign_symptom_classifier_2(sign_symptom_sequence_output)) # sign/symptom logit value |
|
|
477 |
# lab_value_sequence_output = F.relu(self.lab_value_classifier_2(lab_value_sequence_output)) # lab value logit value |
|
|
478 |
|
|
|
479 |
|
|
|
480 |
|
|
|
481 |
dise_logits = self.dise_classifier(dise_sequence_output) # disease logit value |
|
|
482 |
chem_logits = self.chem_classifier(chem_sequence_output) # chemical logit value |
|
|
483 |
gene_logits = self.gene_classifier(gene_sequence_output) # gene/protein logit value |
|
|
484 |
spec_logits = self.spec_classifier(spec_sequence_output) # species logit value |
|
|
485 |
cellline_logits = self.cellline_classifier(cellline_sequence_output) # cell line logit value |
|
|
486 |
dna_logits = self.dna_classifier(dna_sequence_output) # dna logit value |
|
|
487 |
rna_logits = self.rna_classifier(rna_sequence_output) # rna logit value |
|
|
488 |
celltype_logits = self.celltype_classifier(celltype_sequence_output) # cell type logit value |
|
|
489 |
# biological_logits = self.biological_structure_classifier(biological_structure_sequence_output) # biological structure logit value |
|
|
490 |
# diagnostic_logits = self.diagnostic_procedure_classifier(diagnostic_procedure_sequence_output) # diagnostic procedure logit value |
|
|
491 |
# duration_logits = self.duration_classifier(duration_sequence_output) # duration logit value |
|
|
492 |
# date_logits = self.date_classifier(date_sequence_output) |
|
|
493 |
# therapeutic_logits = self.therapeutic_procedure_classifier(therapeutic_procedure_sequence_output) # therapeutic procedure logit value |
|
|
494 |
# sign_symptom_logits = self.sign_symptom_classifier(sign_symptom_sequence_output) # sign/symptom logit value |
|
|
495 |
# lab_value_logits = self.lab_value_classifier(lab_value_sequence_output) # lab value logit value |
|
|
496 |
|
|
|
497 |
|
|
|
498 |
|
|
|
499 |
# update logit and sequence_output |
|
|
500 |
sequence_output =dise_sequence_output + chem_sequence_output + gene_sequence_output + spec_sequence_output + cellline_sequence_output + dna_sequence_output + rna_sequence_output + celltype_sequence_output |
|
|
501 |
# + biological_structure_sequence_output + diagnostic_procedure_sequence_output + duration_sequence_output + date_sequence_output \ |
|
|
502 |
# + therapeutic_procedure_sequence_output + sign_symptom_sequence_output + lab_value_sequence_output |
|
|
503 |
|
|
|
504 |
logits = dise_logits + chem_logits + gene_logits + spec_logits + cellline_logits \ |
|
|
505 |
+ dna_logits + rna_logits + celltype_logits |
|
|
506 |
# + biological_logits \ |
|
|
507 |
# + diagnostic_logits + duration_logits + date_logits + therapeutic_logits \ |
|
|
508 |
# + sign_symptom_logits + lab_value_logits |
|
|
509 |
|
|
|
510 |
|
|
|
511 |
outputs = (logits, sequence_output) |
|
|
512 |
if labels is not None: |
|
|
513 |
loss_fct = CrossEntropyLoss() |
|
|
514 |
# Only keep active parts of the loss |
|
|
515 |
if attention_mask is not None: |
|
|
516 |
if entity_type_ids[0][0].item() == 0: |
|
|
517 |
active_loss = attention_mask.view(-1) == 1 |
|
|
518 |
dise_logits, chem_logits, gene_logits, spec_logits, cellline_logits, \ |
|
|
519 |
dna_logits, rna_logits, celltype_logits = logits |
|
|
520 |
|
|
|
521 |
# biological_logits, diagnostic_logits, \ |
|
|
522 |
# duration_logits, date_logits, therapeutic_logits, \ |
|
|
523 |
# sign_symptom_logits, lab_value_logits |
|
|
524 |
|
|
|
525 |
|
|
|
526 |
active_dise_logits = dise_logits.view(-1, self.num_labels) |
|
|
527 |
active_chem_logits = chem_logits.view(-1, self.num_labels) |
|
|
528 |
active_gene_logits = gene_logits.view(-1, self.num_labels) |
|
|
529 |
active_spec_logits = spec_logits.view(-1, self.num_labels) |
|
|
530 |
active_cellline_logits = cellline_logits.view(-1, self.num_labels) |
|
|
531 |
active_dna_logits = dna_logits.view(-1, self.num_labels) |
|
|
532 |
active_rna_logits = rna_logits.view(-1, self.num_labels) |
|
|
533 |
active_celltype_logits = celltype_logits.view(-1, self.num_labels) |
|
|
534 |
# active_biological_logits = biological_logits.view(-1, self.num_labels) |
|
|
535 |
# active_diagnostic_logits = diagnostic_logits.view(-1, self.num_labels) |
|
|
536 |
# active_duration_logits = duration_logits.view(-1, self.num_labels) |
|
|
537 |
# active_date_logits = date_logits.view(-1, self.num_labels) |
|
|
538 |
# active_therapeutic_logits = therapeutic_logits.view(-1, self.num_labels) |
|
|
539 |
# active_sign_symptom_logits = sign_symptom_logits.view(-1, self.num_labels) |
|
|
540 |
# active_lab_value_logits = lab_value_logits.view(-1, self.num_labels) |
|
|
541 |
|
|
|
542 |
|
|
|
543 |
active_labels = torch.where( |
|
|
544 |
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) |
|
|
545 |
) |
|
|
546 |
dise_loss = loss_fct(active_dise_logits, active_labels) |
|
|
547 |
chem_loss = loss_fct(active_chem_logits, active_labels) |
|
|
548 |
gene_loss = loss_fct(active_gene_logits, active_labels) |
|
|
549 |
spec_loss = loss_fct(active_spec_logits, active_labels) |
|
|
550 |
cellline_loss = loss_fct(active_cellline_logits, active_labels) |
|
|
551 |
dna_loss = loss_fct(active_dna_logits, active_labels) |
|
|
552 |
rna_loss = loss_fct(active_rna_logits, active_labels) |
|
|
553 |
celltype_loss = loss_fct(active_celltype_logits, active_labels) |
|
|
554 |
# biological_loss = loss_fct(active_biological_logits, active_labels) |
|
|
555 |
# diagnostic_loss = loss_fct(active_diagnostic_logits, active_labels) |
|
|
556 |
# duration_loss = loss_fct(active_duration_logits, active_labels) |
|
|
557 |
# date_loss = loss_fct(active_date_logits, active_labels) |
|
|
558 |
# therapeutic_loss = loss_fct(active_therapeutic_logits, active_labels) |
|
|
559 |
# sign_symptom_loss = loss_fct(active_sign_symptom_logits, active_labels) |
|
|
560 |
# lab_value_loss = loss_fct(active_lab_value_logits, active_labels) |
|
|
561 |
|
|
|
562 |
loss = dise_loss + chem_loss + gene_loss + spec_loss + cellline_loss + dna_loss + rna_loss + celltype_loss |
|
|
563 |
# + biological_loss + diagnostic_loss \ |
|
|
564 |
# + duration_loss + date_loss + therapeutic_loss + sign_symptom_loss + lab_value_loss |
|
|
565 |
|
|
|
566 |
return ((loss,) + outputs) |
|
|
567 |
else: |
|
|
568 |
active_loss = attention_mask.view(-1) == 1 |
|
|
569 |
active_logits = logits.view(-1, self.num_labels) |
|
|
570 |
active_labels = torch.where( |
|
|
571 |
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) |
|
|
572 |
) |
|
|
573 |
loss = loss_fct(active_logits, active_labels) |
|
|
574 |
return ((loss,) + outputs) |
|
|
575 |
else: |
|
|
576 |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
577 |
return loss |
|
|
578 |
else: |
|
|
579 |
return logits |
|
|
580 |
|
|
|
581 |
|
|
|
582 |
class NER(BertForTokenClassification): |
|
|
583 |
def __init__(self, config, num_labels=3): |
|
|
584 |
super(NER, self).__init__(config) |
|
|
585 |
self.num_labels = num_labels |
|
|
586 |
self.bert = BertModel(config) |
|
|
587 |
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob) |
|
|
588 |
self.classifier = torch.nn.Linear(config.hidden_size, self.num_labels) |
|
|
589 |
|
|
|
590 |
self.init_weights() |
|
|
591 |
|
|
|
592 |
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None): |
|
|
593 |
sequence_output = self.bert(input_ids, token_type_ids, attention_mask, head_mask=None)[0] |
|
|
594 |
batch_size,max_len,feat_dim = sequence_output.shape |
|
|
595 |
sequence_output = self.dropout(sequence_output) |
|
|
596 |
|
|
|
597 |
logits = self.classifier(sequence_output) |
|
|
598 |
|
|
|
599 |
outputs = (logits, sequence_output) |
|
|
600 |
if labels is not None: |
|
|
601 |
loss_fct = CrossEntropyLoss() |
|
|
602 |
# Only keep active parts of the loss |
|
|
603 |
if attention_mask is not None: |
|
|
604 |
active_loss = attention_mask.view(-1) == 1 |
|
|
605 |
active_logits = logits.view(-1, self.num_labels) |
|
|
606 |
active_labels = torch.where( |
|
|
607 |
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) |
|
|
608 |
) |
|
|
609 |
loss = loss_fct(active_logits, active_labels) |
|
|
610 |
return ((loss,) + outputs) |
|
|
611 |
else: |
|
|
612 |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
613 |
return loss |
|
|
614 |
else: |
|
|
615 |
return logits |
|
|
616 |
|
|
|
617 |
|