|
a |
|
b/src/Parser/biomedner_init.py |
|
|
1 |
import logging |
|
|
2 |
import os |
|
|
3 |
import time |
|
|
4 |
import json |
|
|
5 |
import torch |
|
|
6 |
import argparse |
|
|
7 |
import numpy as np |
|
|
8 |
|
|
|
9 |
from dataclasses import dataclass, field |
|
|
10 |
from typing import Any, Callable, Dict, List, Optional, NewType, NamedTuple, Union, Tuple |
|
|
11 |
from tqdm import tqdm |
|
|
12 |
from torch import nn |
|
|
13 |
from torch.utils.data.dataset import Dataset |
|
|
14 |
from torch.utils.data.dataloader import DataLoader |
|
|
15 |
from torch.utils.data.sampler import SequentialSampler |
|
|
16 |
|
|
|
17 |
from transformers import ( |
|
|
18 |
AutoConfig, |
|
|
19 |
AutoTokenizer, |
|
|
20 |
set_seed, |
|
|
21 |
PreTrainedTokenizer, |
|
|
22 |
BertTokenizerFast |
|
|
23 |
) |
|
|
24 |
|
|
|
25 |
from ops import ( |
|
|
26 |
json_to_sent, |
|
|
27 |
input_form, |
|
|
28 |
get_prob, |
|
|
29 |
detokenize, |
|
|
30 |
preprocess, |
|
|
31 |
Profile, |
|
|
32 |
) |
|
|
33 |
from models import RoBERTaMultiNER2, BERTMultiNER2 |
|
|
34 |
|
|
|
35 |
logger = logging.getLogger(__name__) |
|
|
36 |
|
|
|
37 |
InputDataClass = NewType("InputDataClass", Any) |
|
|
38 |
DataCollator = NewType("DataCollator", Callable[[List[InputDataClass]], Dict[str, torch.Tensor]]) |
|
|
39 |
|
|
|
40 |
@dataclass |
|
|
41 |
class InputExample: |
|
|
42 |
""" |
|
|
43 |
A single training/test example for token classification. |
|
|
44 |
|
|
|
45 |
Args: |
|
|
46 |
guid: Unique id for the example. |
|
|
47 |
words: list. The words of the sequence. |
|
|
48 |
labels: (Optional) list. The labels for each word of the sequence. This should be |
|
|
49 |
specified for train and dev examples, but not for test examples. |
|
|
50 |
""" |
|
|
51 |
|
|
|
52 |
guid: str |
|
|
53 |
words: List[str] |
|
|
54 |
labels: Optional[List[str]] |
|
|
55 |
entity_labels: Optional[List[int]] |
|
|
56 |
|
|
|
57 |
@dataclass |
|
|
58 |
class InputFeatures: |
|
|
59 |
""" |
|
|
60 |
A single set of features of data. |
|
|
61 |
Property names are the same names as the corresponding inputs to a model. |
|
|
62 |
""" |
|
|
63 |
|
|
|
64 |
input_ids: List[int] |
|
|
65 |
attention_mask: List[int] |
|
|
66 |
token_type_ids: Optional[List[int]] = None |
|
|
67 |
label_ids: Optional[List[int]] = None |
|
|
68 |
entity_type_ids: Optional[List[int]] = None |
|
|
69 |
|
|
|
70 |
class DataProcessor(object): |
|
|
71 |
"""Base class for data converters for sequence classification data sets.""" |
|
|
72 |
|
|
|
73 |
def get_train_examples(self, data_dir): |
|
|
74 |
"""Gets a collection of `InputExample`s for the train set.""" |
|
|
75 |
raise NotImplementedError() |
|
|
76 |
|
|
|
77 |
def get_dev_examples(self, data_dir): |
|
|
78 |
"""Gets a collection of `InputExample`s for the dev set.""" |
|
|
79 |
raise NotImplementedError() |
|
|
80 |
|
|
|
81 |
def get_labels(self): |
|
|
82 |
"""Gets the list of labels for this data set.""" |
|
|
83 |
raise NotImplementedError() |
|
|
84 |
|
|
|
85 |
@classmethod |
|
|
86 |
def _read_data(cls, data, pmids): |
|
|
87 |
"""Reads a BIO data.""" |
|
|
88 |
lines = [] |
|
|
89 |
words = [] |
|
|
90 |
labels = [] |
|
|
91 |
entity_labels = [] |
|
|
92 |
for pmid in pmids: |
|
|
93 |
for sent in data[pmid]['words']: |
|
|
94 |
words = sent[:] |
|
|
95 |
labels = ['O'] * len(words) |
|
|
96 |
entity_labels = [str(0)] * len(words) |
|
|
97 |
|
|
|
98 |
if len(words) >= 30: |
|
|
99 |
while len(words) >= 30: |
|
|
100 |
tmplabel = labels[:30] |
|
|
101 |
l = ' '.join([label for label |
|
|
102 |
in labels[:len(tmplabel)] |
|
|
103 |
if len(label) > 0]) |
|
|
104 |
w = ' '.join([word for word |
|
|
105 |
in words[:len(tmplabel)] |
|
|
106 |
if len(word) > 0]) |
|
|
107 |
e = ' '.join([el for el |
|
|
108 |
in entity_labels[:len(tmplabel)] |
|
|
109 |
if len(el) > 0]) |
|
|
110 |
lines.append([l, w, e]) |
|
|
111 |
words = words[len(tmplabel):] |
|
|
112 |
labels = labels[len(tmplabel):] |
|
|
113 |
entity_labels = entity_labels[len(tmplabel):] |
|
|
114 |
if len(words) == 0: |
|
|
115 |
continue |
|
|
116 |
|
|
|
117 |
l = ' '.join([label for label in labels if len(label) > 0]) |
|
|
118 |
w = ' '.join([word for word in words if len(word) > 0]) |
|
|
119 |
e = ' '.join([el for el in entity_labels if len(entity_labels) > 0]) |
|
|
120 |
lines.append([l, w, e]) |
|
|
121 |
words = [] |
|
|
122 |
labels = [] |
|
|
123 |
entity_labels = [] |
|
|
124 |
continue |
|
|
125 |
|
|
|
126 |
return lines |
|
|
127 |
|
|
|
128 |
class NerDataset(Dataset): |
|
|
129 |
""" |
|
|
130 |
This will be superseded by a framework-agnostic approach soon. |
|
|
131 |
""" |
|
|
132 |
features: List[InputFeatures] |
|
|
133 |
pad_token_label_id: int = nn.CrossEntropyLoss().ignore_index |
|
|
134 |
def __init__( |
|
|
135 |
self, |
|
|
136 |
predict_examples, |
|
|
137 |
labels: List[str], |
|
|
138 |
tokenizer: PreTrainedTokenizer, |
|
|
139 |
config, |
|
|
140 |
params, |
|
|
141 |
base_name |
|
|
142 |
): |
|
|
143 |
logger.info(f"Creating features from dataset file") |
|
|
144 |
self.labels = labels |
|
|
145 |
self.predict_examples = predict_examples |
|
|
146 |
self.tokenizer = tokenizer |
|
|
147 |
self.config = config |
|
|
148 |
self.params = params |
|
|
149 |
|
|
|
150 |
self.features = convert_examples_to_features( |
|
|
151 |
self.predict_examples, |
|
|
152 |
self.labels, |
|
|
153 |
self.params.max_seq_length, |
|
|
154 |
self.tokenizer, |
|
|
155 |
cls_token_at_end=bool(self.config.model_type in ["xlnet"]), |
|
|
156 |
cls_token=self.tokenizer.cls_token, |
|
|
157 |
cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0, |
|
|
158 |
sep_token=self.tokenizer.sep_token, |
|
|
159 |
sep_token_extra=False, |
|
|
160 |
pad_on_left=bool(self.tokenizer.padding_side=="left"), |
|
|
161 |
pad_token=self.tokenizer.pad_token_id, |
|
|
162 |
pad_token_segment_id=self.tokenizer.pad_token_type_id, |
|
|
163 |
pad_token_label_id=self.pad_token_label_id, |
|
|
164 |
base_name=base_name, |
|
|
165 |
) |
|
|
166 |
|
|
|
167 |
def __len__(self): |
|
|
168 |
return len(self.features) |
|
|
169 |
|
|
|
170 |
def __getitem__(self, i) -> InputFeatures: |
|
|
171 |
return self.features[i] |
|
|
172 |
|
|
|
173 |
class PredictionOutput(NamedTuple): |
|
|
174 |
predictions: np.ndarray |
|
|
175 |
label_ids: Optional[np.ndarray] |
|
|
176 |
|
|
|
177 |
def default_data_collator(features: List[InputDataClass]) -> Dict[str, torch.Tensor]: |
|
|
178 |
""" |
|
|
179 |
Very simple data collator that: |
|
|
180 |
- simply collates batches of dict-like objects |
|
|
181 |
- Performs special handling for potential keys named: |
|
|
182 |
- `label`: handles a single value (int or float) per object |
|
|
183 |
- `label_ids`: handles a list of values per object |
|
|
184 |
- does not do any additional preprocessing |
|
|
185 |
|
|
|
186 |
i.e., Property names of the input object will be used as corresponding inputs to the model. |
|
|
187 |
See glue and ner for example of how it's useful. |
|
|
188 |
""" |
|
|
189 |
|
|
|
190 |
# In this function we'll make the assumption that all `features` in the batch |
|
|
191 |
# have the same attributes. |
|
|
192 |
# So we will look at the first element as a proxy for what attributes exist |
|
|
193 |
# on the whole batch. |
|
|
194 |
if not isinstance(features[0], dict): |
|
|
195 |
features = [vars(f) for f in features] |
|
|
196 |
|
|
|
197 |
first = features[0] |
|
|
198 |
batch = {} |
|
|
199 |
|
|
|
200 |
# Special handling for labels. |
|
|
201 |
# Ensure that tensor is created with the correct type |
|
|
202 |
# (it should be automatically the case, but let's make sure of it.) |
|
|
203 |
if "label" in first and first["label"] is not None: |
|
|
204 |
dtype = torch.long if type(first["label"]) is int else torch.float |
|
|
205 |
batch["labels"] = torch.tensor([f["label"] for f in features], dtype=dtype) |
|
|
206 |
elif "label_ids" in first and first["label_ids"] is not None: |
|
|
207 |
if isinstance(first["label_ids"], torch.Tensor): |
|
|
208 |
batch["labels"] = torch.stack([f["label_ids"] for f in features]) |
|
|
209 |
else: |
|
|
210 |
dtype = torch.long if type(first["label_ids"][0]) is int else torch.float |
|
|
211 |
batch["labels"] = torch.tensor([f["label_ids"] for f in features], dtype=dtype) |
|
|
212 |
|
|
|
213 |
# Handling of all other possible keys. |
|
|
214 |
# Again, we will use the first element to figure out which key/values are not None for this model. |
|
|
215 |
for k, v in first.items(): |
|
|
216 |
if k not in ("label", "label_ids") and v is not None and not isinstance(v, str): |
|
|
217 |
if isinstance(v, torch.Tensor): |
|
|
218 |
batch[k] = torch.stack([f[k] for f in features]) |
|
|
219 |
else: |
|
|
220 |
batch[k] = torch.tensor([f[k] for f in features], dtype=torch.long) |
|
|
221 |
|
|
|
222 |
return batch |
|
|
223 |
|
|
|
224 |
|
|
|
225 |
def convert_examples_to_features( |
|
|
226 |
examples: List[InputExample], |
|
|
227 |
label_list: List[str], |
|
|
228 |
max_seq_length: int, |
|
|
229 |
tokenizer: PreTrainedTokenizer, |
|
|
230 |
cls_token_at_end=False, |
|
|
231 |
cls_token="[CLS]", |
|
|
232 |
cls_token_segment_id=1, |
|
|
233 |
sep_token="[SEP]", |
|
|
234 |
sep_token_extra=False, |
|
|
235 |
pad_on_left=False, |
|
|
236 |
pad_token=0, |
|
|
237 |
pad_token_segment_id=0, |
|
|
238 |
pad_token_label_id=-100, |
|
|
239 |
sequence_a_segment_id=0, |
|
|
240 |
mask_padding_with_zero=True, |
|
|
241 |
base_name="", |
|
|
242 |
) -> List[InputFeatures]: |
|
|
243 |
""" Loads a data file into a list of `InputFeatures` |
|
|
244 |
`cls_token_at_end` define the location of the CLS token: |
|
|
245 |
- False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP] |
|
|
246 |
- True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS] |
|
|
247 |
`cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet) |
|
|
248 |
""" |
|
|
249 |
# TODO clean up all this to leverage built-in features of tokenizers |
|
|
250 |
|
|
|
251 |
label_map = {label: i for i, label in enumerate(label_list)} |
|
|
252 |
features = [] |
|
|
253 |
|
|
|
254 |
for (ex_index, example) in tqdm(enumerate(examples)): |
|
|
255 |
if ex_index % 10_000 == 0: |
|
|
256 |
logger.info("Writing example %d of %d", ex_index, len(examples)) |
|
|
257 |
|
|
|
258 |
tokens, label_ids, = [], [] |
|
|
259 |
det_tokens = [] |
|
|
260 |
|
|
|
261 |
for word_idx, (word, label) in enumerate(zip(example.words.split(), example.labels.split())): |
|
|
262 |
word_tokens = tokenizer.tokenize(word) |
|
|
263 |
|
|
|
264 |
# bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. |
|
|
265 |
if len(word_tokens) > 0: |
|
|
266 |
tokens.extend(word_tokens) |
|
|
267 |
# Use the real label id for the first token of the word, and padding ids for the remaining tokens |
|
|
268 |
label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(word_tokens) - 1)) |
|
|
269 |
|
|
|
270 |
if len(word_tokens) == 1: |
|
|
271 |
det_tokens.extend(word_tokens) |
|
|
272 |
elif len(word_tokens) > 1: |
|
|
273 |
for det_idx, det_word in enumerate(word_tokens): |
|
|
274 |
if det_idx > 0: |
|
|
275 |
det_word = '##' + det_word |
|
|
276 |
det_tokens.append(det_word) |
|
|
277 |
else: |
|
|
278 |
det_tokens.append(det_word) |
|
|
279 |
|
|
|
280 |
# calculate temperature with length : temp = 1 - 0.02 * length |
|
|
281 |
# temperature = [1 - sharpening * i if i > 1 else i for _, i in enumerate(entity_length)] |
|
|
282 |
|
|
|
283 |
# Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. |
|
|
284 |
special_tokens_count = tokenizer.num_special_tokens_to_add() |
|
|
285 |
## truncating tokens with max_seq_length |
|
|
286 |
# if len(tokens) > max_seq_length - special_tokens_count: |
|
|
287 |
# tokens = tokens[: (max_seq_length - special_tokens_count)] |
|
|
288 |
# label_ids = label_ids[: (max_seq_length - special_tokens_count)] |
|
|
289 |
# det_tokens = det_tokens[: (max_seq_length - special_tokens_count)] |
|
|
290 |
|
|
|
291 |
# for sliding window tokens - update 23.11.13 |
|
|
292 |
for i in range(0, (len(tokens) // max_seq_length) + 1): |
|
|
293 |
if i == 0: |
|
|
294 |
window_tokens = tokens[i*max_seq_length:(i+1)*max_seq_length-special_tokens_count] |
|
|
295 |
window_label_ids = label_ids[i*max_seq_length:(i+1)*max_seq_length-special_tokens_count] |
|
|
296 |
window_det_tokens = det_tokens[i*max_seq_length:(i+1)*max_seq_length-special_tokens_count] |
|
|
297 |
elif i >= 1: |
|
|
298 |
window_tokens = tokens[i*max_seq_length-special_tokens_count:(i+1)*max_seq_length-special_tokens_count] |
|
|
299 |
window_label_ids = label_ids[i*max_seq_length-special_tokens_count:(i+1)*max_seq_length-special_tokens_count] |
|
|
300 |
window_det_tokens = det_tokens[i*max_seq_length-special_tokens_count:(i+1)*max_seq_length-special_tokens_count] |
|
|
301 |
|
|
|
302 |
# The convention in BERT is: |
|
|
303 |
# (a) For sequence pairs: |
|
|
304 |
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] |
|
|
305 |
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 |
|
|
306 |
# (b) For single sequences: |
|
|
307 |
# tokens: [CLS] the dog is hairy . [SEP] |
|
|
308 |
# type_ids: 0 0 0 0 0 0 0 |
|
|
309 |
# |
|
|
310 |
# Where "type_ids" are used to indicate whether this is the first |
|
|
311 |
# sequence or the second sequence. The embedding vectors for `type=0` and |
|
|
312 |
# `type=1` were learned during pre-training and are added to the wordpiece |
|
|
313 |
# embedding vector (and position vector). This is not *strictly* necessary |
|
|
314 |
# since the [SEP] token unambiguously separates the sequences, but it makes |
|
|
315 |
# it easier for the model to learn the concept of sequences. |
|
|
316 |
# |
|
|
317 |
# For classification tasks, the first vector (corresponding to [CLS]) is |
|
|
318 |
# used as as the "sentence vector". Note that this only makes sense because |
|
|
319 |
# the entire model is fine-tuned. |
|
|
320 |
window_tokens += [sep_token] |
|
|
321 |
window_label_ids += [pad_token_label_id] |
|
|
322 |
window_det_tokens += [sep_token] |
|
|
323 |
|
|
|
324 |
if sep_token_extra: |
|
|
325 |
# roberta uses an extra separator b/w pairs of sentences |
|
|
326 |
window_tokens += [sep_token] |
|
|
327 |
window_label_ids += [pad_token_label_id] |
|
|
328 |
window_det_tokens += [sep_token] |
|
|
329 |
|
|
|
330 |
# make entity type label index for multiner |
|
|
331 |
entity_type_ids = [int(example.entity_labels[0])] * len(window_tokens) |
|
|
332 |
segment_ids = [sequence_a_segment_id] * len(window_tokens) |
|
|
333 |
if cls_token_at_end: |
|
|
334 |
window_tokens += [cls_token] |
|
|
335 |
window_label_ids += [pad_token_label_id] |
|
|
336 |
segment_ids += [cls_token_segment_id] |
|
|
337 |
entity_type_ids += [int(example.entity_labels[0])] |
|
|
338 |
window_det_tokens += [cls_token] |
|
|
339 |
else: |
|
|
340 |
window_tokens = [cls_token] + window_tokens |
|
|
341 |
window_label_ids = [pad_token_label_id] + window_label_ids |
|
|
342 |
segment_ids = [cls_token_segment_id] + segment_ids |
|
|
343 |
entity_type_ids = [int(example.entity_labels[0])] + entity_type_ids |
|
|
344 |
window_det_tokens = [cls_token] + window_det_tokens |
|
|
345 |
|
|
|
346 |
input_ids = tokenizer.convert_tokens_to_ids(window_tokens) |
|
|
347 |
# The mask has 1 for real tokens and 0 for padding tokens. Only real |
|
|
348 |
# tokens are attended to. |
|
|
349 |
input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) |
|
|
350 |
|
|
|
351 |
# Zero-pad up to the sequence length. |
|
|
352 |
padding_length = max_seq_length - len(input_ids) |
|
|
353 |
|
|
|
354 |
if pad_on_left: |
|
|
355 |
input_ids = ([pad_token] * padding_length) + input_ids |
|
|
356 |
input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask |
|
|
357 |
segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids |
|
|
358 |
window_label_ids = ([pad_token_label_id] * padding_length) + window_label_ids |
|
|
359 |
entity_type_ids = ([int(example.entity_labels[0])] * padding_length) + entity_type_ids |
|
|
360 |
window_tokens = (["**NULL**"] * padding_length) + window_tokens |
|
|
361 |
window_det_tokens = (["**NULL**"] * padding_length) + window_det_tokens |
|
|
362 |
else: |
|
|
363 |
input_ids += [pad_token] * padding_length |
|
|
364 |
input_mask += [0 if mask_padding_with_zero else 1] * padding_length |
|
|
365 |
segment_ids += [pad_token_segment_id] * padding_length |
|
|
366 |
window_label_ids += [pad_token_label_id] * padding_length |
|
|
367 |
entity_type_ids += [int(example.entity_labels[0])] * padding_length |
|
|
368 |
window_tokens += ["**NULL**"] * padding_length |
|
|
369 |
window_det_tokens += ["**NULL**"] * padding_length |
|
|
370 |
|
|
|
371 |
assert len(input_ids) == max_seq_length |
|
|
372 |
assert len(input_mask) == max_seq_length |
|
|
373 |
assert len(segment_ids) == max_seq_length |
|
|
374 |
assert len(window_label_ids) == max_seq_length |
|
|
375 |
assert len(entity_type_ids) == max_seq_length |
|
|
376 |
assert len(window_tokens) == max_seq_length |
|
|
377 |
|
|
|
378 |
if ex_index < 1: |
|
|
379 |
logger.info("*** Example ***") |
|
|
380 |
logger.info("guid: %s", example.guid) |
|
|
381 |
logger.info("tokens: %s", " ".join([str(x) for x in window_tokens])) |
|
|
382 |
logger.info("input_ids: %s", " ".join([str(x) for x in input_ids])) |
|
|
383 |
logger.info("input_mask: %s", " ".join([str(x) for x in input_mask])) |
|
|
384 |
logger.info("segment_ids: %s", " ".join([str(x) for x in segment_ids])) |
|
|
385 |
logger.info("label_ids: %s", " ".join([str(x) for x in window_label_ids])) |
|
|
386 |
logger.info("entity_type_ids: %s", " ".join([str(x) for x in entity_type_ids])) |
|
|
387 |
|
|
|
388 |
if "token_type_ids" not in tokenizer.model_input_names: |
|
|
389 |
segment_ids = None |
|
|
390 |
|
|
|
391 |
features.append( |
|
|
392 |
InputFeatures( |
|
|
393 |
input_ids=input_ids, attention_mask=input_mask, token_type_ids=segment_ids, \ |
|
|
394 |
label_ids=window_label_ids, entity_type_ids=entity_type_ids, \ |
|
|
395 |
) |
|
|
396 |
) |
|
|
397 |
write_tokens(window_tokens, window_det_tokens, 'test', base_name) |
|
|
398 |
|
|
|
399 |
return features |
|
|
400 |
|
|
|
401 |
def write_tokens(tokens, det_tokens, mode, base_name): |
|
|
402 |
if mode == "test": |
|
|
403 |
tmp_path = os.path.join('multi_ner', 'tmp') |
|
|
404 |
if not os.path.exists(tmp_path): |
|
|
405 |
os.makedirs(tmp_path) |
|
|
406 |
|
|
|
407 |
path = os.path.join("multi_ner", "tmp", |
|
|
408 |
"token_{}_{}.txt".format(mode, base_name)) |
|
|
409 |
with open(path, 'a') as wf: |
|
|
410 |
for token in tokens: |
|
|
411 |
if token != "**NULL**": |
|
|
412 |
wf.write(token + '\n') |
|
|
413 |
|
|
|
414 |
det_path = os.path.join("multi_ner", "tmp", |
|
|
415 |
"det_token_{}_{}.txt".format(mode, base_name)) |
|
|
416 |
with open(det_path, 'a') as wf: |
|
|
417 |
for token in det_tokens: |
|
|
418 |
if token != "**NULL**": |
|
|
419 |
wf.write(token + '\n') |
|
|
420 |
|
|
|
421 |
class NerProcessor(DataProcessor): |
|
|
422 |
def get_test_examples(self, data_dir): |
|
|
423 |
data = list() |
|
|
424 |
pmids = list() |
|
|
425 |
with open(data_dir, 'r') as in_: |
|
|
426 |
for line in in_: |
|
|
427 |
line = line.strip() |
|
|
428 |
tmp = json.loads(line) |
|
|
429 |
tmp['title'] = preprocess(tmp['title']) |
|
|
430 |
tmp['abstract'] = preprocess(tmp['abstract']) |
|
|
431 |
data.append(tmp) |
|
|
432 |
pmids.append(tmp["pmid"]) |
|
|
433 |
|
|
|
434 |
json_file = input_form(json_to_sent(data)) |
|
|
435 |
|
|
|
436 |
return \ |
|
|
437 |
self._create_example(self._read_data(json_file, pmids), "test"), \ |
|
|
438 |
json_file, data |
|
|
439 |
|
|
|
440 |
def get_test_dict_list(self, dict_list): |
|
|
441 |
pmids = list() |
|
|
442 |
for d in dict_list: |
|
|
443 |
pmids.append(d["pmid"]) |
|
|
444 |
|
|
|
445 |
json_file = input_form(json_to_sent(dict_list)) |
|
|
446 |
|
|
|
447 |
return \ |
|
|
448 |
self._create_example(self._read_data(json_file, pmids), "test"), \ |
|
|
449 |
json_file |
|
|
450 |
|
|
|
451 |
def get_labels(self): |
|
|
452 |
return ["B", "I", "O"] |
|
|
453 |
|
|
|
454 |
def _create_example(self, lines, set_type): |
|
|
455 |
examples = [] |
|
|
456 |
for (i,line) in enumerate(lines): |
|
|
457 |
guid = "%s-%s" % (set_type, i) |
|
|
458 |
text = line[1] |
|
|
459 |
label = line[0] |
|
|
460 |
entity_labels = line[2] |
|
|
461 |
examples.append(InputExample(guid=guid, words=text, labels=label, entity_labels=entity_labels)) |
|
|
462 |
|
|
|
463 |
return examples |
|
|
464 |
|
|
|
465 |
|
|
|
466 |
class BioMedNER: |
|
|
467 |
def __init__(self, params): |
|
|
468 |
# See all possible arguments in src/transformers/training_args.py |
|
|
469 |
# or by passing the --help flag to this script. |
|
|
470 |
# We now keep distinct sets of args, for a cleaner separation of concerns. |
|
|
471 |
|
|
|
472 |
init_start_t = time.time() |
|
|
473 |
|
|
|
474 |
# Set ner processor |
|
|
475 |
self.processor = NerProcessor() |
|
|
476 |
|
|
|
477 |
# Setup parsing |
|
|
478 |
self.params = params |
|
|
479 |
self.prediction_loss_only = False |
|
|
480 |
|
|
|
481 |
# Set seed |
|
|
482 |
set_seed(self.params.seed) |
|
|
483 |
|
|
|
484 |
# Prepare Labels |
|
|
485 |
self.labels = self.processor.get_labels() |
|
|
486 |
self.id2label: Dict[int, str] = {i: label for i, label in enumerate(self.labels)} |
|
|
487 |
self.label2id = {label:i for i, label in enumerate(self.labels)} |
|
|
488 |
self.num_labels = len(self.labels) |
|
|
489 |
|
|
|
490 |
self.config = AutoConfig.from_pretrained( |
|
|
491 |
self.params.model_name_or_path, |
|
|
492 |
num_labels=self.num_labels, |
|
|
493 |
id2label=self.id2label, |
|
|
494 |
label2id=self.label2id, |
|
|
495 |
) |
|
|
496 |
self.tokenizer = BertTokenizerFast.from_pretrained( |
|
|
497 |
self.params.model_name_or_path, |
|
|
498 |
) |
|
|
499 |
self.model = BERTMultiNER2.from_pretrained( |
|
|
500 |
self.params.model_name_or_path, |
|
|
501 |
num_labels=self.num_labels, |
|
|
502 |
config=self.config, |
|
|
503 |
) |
|
|
504 |
if not self.params.no_cuda: |
|
|
505 |
self.model = self.model.cuda() |
|
|
506 |
self.entity_types = ['disease', 'drug', 'gene', 'species', 'cell_line', 'DNA', 'RNA', 'cell_type'] |
|
|
507 |
# 'biological_structure', 'diagnostic_procedure', 'duration', 'date', 'therapeutic_procedure', |
|
|
508 |
# 'sign_symptom', 'lab_value'] |
|
|
509 |
self.estimator_dict = {} |
|
|
510 |
for etype in self.entity_types: |
|
|
511 |
self.estimator_dict[etype] = {} |
|
|
512 |
self.estimator_dict[etype]['prediction'] = [] |
|
|
513 |
self.estimator_dict[etype]['log_probs'] = [] |
|
|
514 |
|
|
|
515 |
self.counter = 0 |
|
|
516 |
self.pad_token_label_id:int = nn.CrossEntropyLoss().ignore_index |
|
|
517 |
init_end_t = time.time() |
|
|
518 |
print('BioMedNER init_t {:.3f} sec.'.format(init_end_t - init_start_t)) |
|
|
519 |
|
|
|
520 |
@Profile(__name__) |
|
|
521 |
def recognize(self, input_dl, base_name, indent=None): |
|
|
522 |
if type(input_dl) is str: |
|
|
523 |
predict_examples, self.json_dict, self.data_list = \ |
|
|
524 |
self.processor.get_test_examples(input_dl) |
|
|
525 |
elif type(input_dl) is list: |
|
|
526 |
predict_examples, self.json_dict = \ |
|
|
527 |
self.processor.get_test_dict_list(input_dl) |
|
|
528 |
self.data_list = input_dl |
|
|
529 |
else: |
|
|
530 |
raise ValueError('Wrong type') |
|
|
531 |
|
|
|
532 |
token_path = os.path.join("multi_ner", "tmp", |
|
|
533 |
"token_test_{}.txt".format(base_name)) |
|
|
534 |
det_token_path = os.path.join("multi_ner", "tmp", |
|
|
535 |
"det_token_test_{}.txt".format(base_name)) |
|
|
536 |
|
|
|
537 |
if os.path.exists(token_path): |
|
|
538 |
os.remove(token_path) |
|
|
539 |
if os.path.exists(det_token_path): |
|
|
540 |
os.remove(det_token_path) |
|
|
541 |
|
|
|
542 |
predict_example_list = (NerDataset(predict_examples, self.labels,\ |
|
|
543 |
self.tokenizer, self.config, self.params, base_name)) |
|
|
544 |
|
|
|
545 |
tokens, tot_tokens = list(), list() |
|
|
546 |
|
|
|
547 |
""" |
|
|
548 |
Aggregate label results with detokenized tokens |
|
|
549 |
|
|
|
550 |
words: <s> Auto phagy main tain s tumour growth ... </s> |
|
|
551 |
label: O O O O O O B O ... O |
|
|
552 |
|
|
|
553 |
detok_words: <s> Authophagy maintains tumour growth ... </s> |
|
|
554 |
detok_label: O O O B O ... </s> |
|
|
555 |
""" |
|
|
556 |
|
|
|
557 |
with open(det_token_path, 'r') as reader: |
|
|
558 |
for line_idx, line in enumerate(reader): |
|
|
559 |
tok = line.strip() |
|
|
560 |
tot_tokens.append(tok) |
|
|
561 |
|
|
|
562 |
if tok == '[CLS]' or tok == '<s>': |
|
|
563 |
tmp_toks = [tok] |
|
|
564 |
elif tok == '[SEP]' or tok == '</s>': |
|
|
565 |
tmp_toks.append(tok) |
|
|
566 |
tokens.append(tmp_toks) |
|
|
567 |
else: |
|
|
568 |
tmp_toks.append(tok) |
|
|
569 |
|
|
|
570 |
self.predict_dict, self.prob_dict = dict(), dict() |
|
|
571 |
threads, self.out_tag_dict = list(), dict() |
|
|
572 |
|
|
|
573 |
all_type = self._predict(predict_example_list) |
|
|
574 |
# disease, drug, gene, spec, cell_line, dna, rna, cell_type |
|
|
575 |
for etype_idx, etype in enumerate(self.entity_types): |
|
|
576 |
|
|
|
577 |
predictions, label_ids = all_type[etype_idx] # batch, seq, labels |
|
|
578 |
preds_array = self.align_predictions(predictions) # batch, seq |
|
|
579 |
|
|
|
580 |
self.out_tag_dict[etype] = (False, None) |
|
|
581 |
self.recognize_etype(etype, tokens, tot_tokens, predictions, preds_array) |
|
|
582 |
|
|
|
583 |
for etype in self.entity_types: |
|
|
584 |
if self.out_tag_dict[etype][0]: |
|
|
585 |
if type(input_dl) is str: |
|
|
586 |
print(os.path.split(input_dl)[1], |
|
|
587 |
'Found an error:', self.out_tag_dict[etype][1]) |
|
|
588 |
else: |
|
|
589 |
print('Found an error:', self.out_tag_dict[etype][1]) |
|
|
590 |
if os.path.exists(token_path): |
|
|
591 |
os.remove(token_path) |
|
|
592 |
return None |
|
|
593 |
|
|
|
594 |
# get probability of all mentions |
|
|
595 |
data_list = get_prob(self.data_list, self.json_dict, self.predict_dict, |
|
|
596 |
self.prob_dict, entity_types=self.entity_types) |
|
|
597 |
|
|
|
598 |
if type(input_dl) is str: |
|
|
599 |
output_path = os.path.join('result/', os.path.splitext( |
|
|
600 |
os.path.basename(input_dl))[0] + '_NER_{}.json'.format(base_name)) |
|
|
601 |
print('pred', output_path) |
|
|
602 |
|
|
|
603 |
with open(output_path, 'w') as resultf: |
|
|
604 |
for paper in data_list: |
|
|
605 |
paper['ner_model'] = "MULTI-TASK NER v.20210707" |
|
|
606 |
resultf.write( |
|
|
607 |
json.dumps(paper, sort_keys=True, indent=indent) + '\n' |
|
|
608 |
) |
|
|
609 |
# delete temp files |
|
|
610 |
if os.path.exists(token_path): |
|
|
611 |
os.remove(token_path) |
|
|
612 |
if os.path.exists(det_token_path): |
|
|
613 |
os.remove(det_token_path) |
|
|
614 |
|
|
|
615 |
return data_list |
|
|
616 |
|
|
|
617 |
@Profile(__name__) |
|
|
618 |
def recognize_etype(self, etype, tokens, tot_tokens, predictions, preds_array): |
|
|
619 |
result = [] |
|
|
620 |
|
|
|
621 |
for one_batch in range(predictions.shape[0]): |
|
|
622 |
result.append({'prediction':preds_array[one_batch], |
|
|
623 |
'log_probs':predictions[one_batch]}) |
|
|
624 |
|
|
|
625 |
predicts = list() |
|
|
626 |
logits = list() |
|
|
627 |
|
|
|
628 |
for pidx, prediction in enumerate(result): |
|
|
629 |
slen = len(tokens[pidx]) |
|
|
630 |
for p in prediction['prediction'][:slen]: |
|
|
631 |
predicts.append(self.id2label[p]) |
|
|
632 |
for l in prediction['log_probs'][:slen]: |
|
|
633 |
logits.append(l) |
|
|
634 |
|
|
|
635 |
de_toks, de_labels, de_logits = detokenize(tot_tokens, predicts, logits) |
|
|
636 |
|
|
|
637 |
self.predict_dict[etype] = dict() |
|
|
638 |
self.prob_dict[etype] = dict() |
|
|
639 |
piv = 0 |
|
|
640 |
for data in self.data_list: |
|
|
641 |
pmid = data['pmid'] |
|
|
642 |
self.predict_dict[etype][pmid] = list() |
|
|
643 |
self.prob_dict[etype][pmid] = list() |
|
|
644 |
|
|
|
645 |
sent_lens = list() |
|
|
646 |
for sent in self.json_dict[pmid]['words']: |
|
|
647 |
sent_lens.append(len(sent)) |
|
|
648 |
sent_idx = 0 |
|
|
649 |
de_i = 0 |
|
|
650 |
overlen = False |
|
|
651 |
while True: |
|
|
652 |
if overlen: |
|
|
653 |
|
|
|
654 |
try: |
|
|
655 |
self.predict_dict[etype][pmid][-1].extend( |
|
|
656 |
de_labels[piv + de_i]) |
|
|
657 |
except Exception as e: |
|
|
658 |
self.out_tag_dict[etype] = (True, e) |
|
|
659 |
break |
|
|
660 |
self.prob_dict[etype][pmid][-1].extend(de_logits[piv + de_i]) |
|
|
661 |
de_i += 1 |
|
|
662 |
if len(self.predict_dict[etype][pmid][-1]) == len( |
|
|
663 |
self.json_dict[pmid]['words'][ |
|
|
664 |
len(self.predict_dict[etype][pmid]) - 1]): |
|
|
665 |
sent_idx += 1 |
|
|
666 |
overlen = False |
|
|
667 |
|
|
|
668 |
else: |
|
|
669 |
self.predict_dict[etype][pmid].append(de_labels[piv + de_i]) |
|
|
670 |
self.prob_dict[etype][pmid].append(de_logits[piv + de_i]) |
|
|
671 |
de_i += 1 |
|
|
672 |
if len(self.predict_dict[etype][pmid][-1]) == len( |
|
|
673 |
self.json_dict[pmid]['words'][ |
|
|
674 |
len(self.predict_dict[etype][pmid]) - 1]): |
|
|
675 |
sent_idx += 1 |
|
|
676 |
overlen = False |
|
|
677 |
else: |
|
|
678 |
overlen = True |
|
|
679 |
|
|
|
680 |
if sent_idx == len(self.json_dict[pmid]['words']): |
|
|
681 |
piv += de_i |
|
|
682 |
break |
|
|
683 |
|
|
|
684 |
if self.out_tag_dict[etype][0]: |
|
|
685 |
break |
|
|
686 |
|
|
|
687 |
def _predict(self, test_dataset:Dataset): |
|
|
688 |
sampler = SequentialSampler(test_dataset) |
|
|
689 |
data_loader = DataLoader( |
|
|
690 |
test_dataset, |
|
|
691 |
sampler=sampler, |
|
|
692 |
batch_size=32, # you can adjust evaluation batch size, we prefer using 32 |
|
|
693 |
collate_fn=default_data_collator, |
|
|
694 |
drop_last=False, |
|
|
695 |
) |
|
|
696 |
return self._prediction_loop(data_loader, description="Prediction") |
|
|
697 |
|
|
|
698 |
def _prediction_loop( |
|
|
699 |
self, dataloader: DataLoader, description: str, prediction_loss_only: Optional[bool] = None |
|
|
700 |
) -> PredictionOutput: |
|
|
701 |
""" |
|
|
702 |
Prediction/evaluation loop, shared by `evaluate()` and `predict()`. |
|
|
703 |
|
|
|
704 |
Works both with or without labels. |
|
|
705 |
""" |
|
|
706 |
|
|
|
707 |
prediction_loss_only = prediction_loss_only if prediction_loss_only is not None else self.prediction_loss_only |
|
|
708 |
|
|
|
709 |
model = self.model |
|
|
710 |
|
|
|
711 |
eval_losses: List[float] = [] |
|
|
712 |
dise_preds: torch.Tensor = None |
|
|
713 |
chem_preds: torch.Tensor = None |
|
|
714 |
gene_preds: torch.Tensor = None |
|
|
715 |
spec_preds: torch.Tensor = None |
|
|
716 |
cl_preds: torch.Tensor = None |
|
|
717 |
dna_preds: torch.Tensor = None |
|
|
718 |
rna_preds: torch.Tensor = None |
|
|
719 |
ct_preds: torch.Tensor = None |
|
|
720 |
# biological_preds: torch.Tensor = None |
|
|
721 |
# diagnostic_preds: torch.Tensor = None |
|
|
722 |
# duration_preds: torch.Tensor = None |
|
|
723 |
# date_preds: torch.Tensor = None |
|
|
724 |
# therapeutic_preds: torch.Tensor = None |
|
|
725 |
# sign_symptom_preds: torch.Tensor = None |
|
|
726 |
# lab_value_preds: torch.Tensor = None |
|
|
727 |
label_ids: torch.Tensor = None |
|
|
728 |
model.eval() |
|
|
729 |
|
|
|
730 |
for inputs in tqdm(dataloader, desc=description): |
|
|
731 |
has_labels = any(inputs.get(k) is not None for k in ["labels", "lm_labels", "masked_lm_labels"]) |
|
|
732 |
|
|
|
733 |
for k, v in inputs.items(): |
|
|
734 |
if isinstance(v, torch.Tensor): |
|
|
735 |
inputs[k] = v.to(self.model.device) |
|
|
736 |
|
|
|
737 |
with torch.no_grad(): |
|
|
738 |
outputs = model(**inputs) |
|
|
739 |
if has_labels: |
|
|
740 |
step_eval_loss, logits = outputs[:2] |
|
|
741 |
eval_losses += [step_eval_loss.mean().item()] |
|
|
742 |
else: |
|
|
743 |
logits = outputs[0] |
|
|
744 |
|
|
|
745 |
if not prediction_loss_only: |
|
|
746 |
(dise_logits, chem_logits, gene_logits, spec_logits, cl_logits, dna_logits, rna_logits, ct_logits) = logits |
|
|
747 |
# biological_logits, diagnostic_logits, duration_logits, date_logits, therapeutic_logits, |
|
|
748 |
# sign_symptom_logits, lab_value_logits) = logits |
|
|
749 |
|
|
|
750 |
if dise_preds is None \ |
|
|
751 |
and chem_preds is None \ |
|
|
752 |
and gene_preds is None \ |
|
|
753 |
and spec_preds is None \ |
|
|
754 |
and cl_preds is None \ |
|
|
755 |
and dna_preds is None \ |
|
|
756 |
and rna_preds is None \ |
|
|
757 |
and ct_preds is None : |
|
|
758 |
# and biological_preds is None \ |
|
|
759 |
# and diagnostic_preds is None \ |
|
|
760 |
# and duration_preds is None \ |
|
|
761 |
# and date_preds is None \ |
|
|
762 |
# and therapeutic_preds is None \ |
|
|
763 |
# and sign_symptom_preds is None \ |
|
|
764 |
# and lab_value_preds is None: |
|
|
765 |
|
|
|
766 |
dise_preds = dise_logits.detach() |
|
|
767 |
chem_preds = chem_logits.detach() |
|
|
768 |
gene_preds = gene_logits.detach() |
|
|
769 |
spec_preds = spec_logits.detach() |
|
|
770 |
cl_preds = cl_logits.detach() |
|
|
771 |
dna_preds = dna_logits.detach() |
|
|
772 |
rna_preds = rna_logits.detach() |
|
|
773 |
ct_preds = ct_logits.detach() |
|
|
774 |
# biological_preds = biological_logits.detach() |
|
|
775 |
# diagnostic_preds = diagnostic_logits.detach() |
|
|
776 |
# duration_preds = duration_logits.detach() |
|
|
777 |
# date_preds = date_logits.detach() |
|
|
778 |
# therapeutic_preds = therapeutic_logits.detach() |
|
|
779 |
# sign_symptom_preds = sign_symptom_logits.detach() |
|
|
780 |
# lab_value_preds = lab_value_logits.detach() |
|
|
781 |
else: |
|
|
782 |
dise_preds = torch.cat((dise_preds, dise_logits.detach()), dim=0) |
|
|
783 |
chem_preds = torch.cat((chem_preds, chem_logits.detach()), dim=0) |
|
|
784 |
gene_preds = torch.cat((gene_preds, gene_logits.detach()), dim=0) |
|
|
785 |
spec_preds = torch.cat((spec_preds, spec_logits.detach()), dim=0) |
|
|
786 |
cl_preds = torch.cat((cl_preds, cl_logits.detach()), dim=0) |
|
|
787 |
dna_preds = torch.cat((dna_preds, dna_logits.detach()), dim=0) |
|
|
788 |
rna_preds = torch.cat((rna_preds, rna_logits.detach()), dim=0) |
|
|
789 |
ct_preds = torch.cat((ct_preds, ct_logits.detach()), dim=0) |
|
|
790 |
# biological_preds = torch.cat((biological_preds, biological_logits.detach()), dim=0) |
|
|
791 |
# diagnostic_preds = torch.cat((diagnostic_preds, diagnostic_logits.detach()), dim=0) |
|
|
792 |
# duration_preds = torch.cat((duration_preds, duration_logits.detach()), dim=0) |
|
|
793 |
# date_preds = torch.cat((date_preds, date_logits.detach()), dim=0) |
|
|
794 |
# therapeutic_preds = torch.cat((therapeutic_preds, therapeutic_logits.detach()), dim=0) |
|
|
795 |
# sign_symptom_preds = torch.cat((sign_symptom_preds, sign_symptom_logits.detach()), dim=0) |
|
|
796 |
# lab_value_preds = torch.cat((lab_value_preds, lab_value_logits.detach()), dim=0) |
|
|
797 |
if inputs.get("labels") is not None: |
|
|
798 |
if label_ids is None: |
|
|
799 |
label_ids = inputs["labels"].detach() |
|
|
800 |
else: |
|
|
801 |
label_ids = torch.cat((label_ids, inputs["labels"].detach()), dim=0) |
|
|
802 |
|
|
|
803 |
# Finally, turn the aggregated tensors into numpy arrays. |
|
|
804 |
if dise_preds is not None \ |
|
|
805 |
and chem_preds is not None \ |
|
|
806 |
and gene_preds is not None \ |
|
|
807 |
and spec_preds is not None \ |
|
|
808 |
and cl_preds is not None \ |
|
|
809 |
and dna_preds is not None \ |
|
|
810 |
and rna_preds is not None \ |
|
|
811 |
and ct_preds is not None : |
|
|
812 |
# and biological_preds is not None \ |
|
|
813 |
# and diagnostic_preds is not None \ |
|
|
814 |
# and duration_preds is not None \ |
|
|
815 |
# and date_preds is not None \ |
|
|
816 |
# and therapeutic_preds is not None \ |
|
|
817 |
# and sign_symptom_preds is not None \ |
|
|
818 |
# and lab_value_preds is not None: |
|
|
819 |
|
|
|
820 |
dise_preds = dise_preds.cpu().numpy() |
|
|
821 |
chem_preds = chem_preds.cpu().numpy() |
|
|
822 |
gene_preds = gene_preds.cpu().numpy() |
|
|
823 |
spec_preds = spec_preds.cpu().numpy() |
|
|
824 |
cl_preds = cl_preds.cpu().numpy() |
|
|
825 |
dna_preds = dna_preds.cpu().numpy() |
|
|
826 |
rna_preds = rna_preds.cpu().numpy() |
|
|
827 |
ct_preds = ct_preds.cpu().numpy() |
|
|
828 |
# biological_preds = biological_preds.cpu().numpy() |
|
|
829 |
# diagnostic_preds = diagnostic_preds.cpu().numpy() |
|
|
830 |
# duration_preds = duration_preds.cpu().numpy() |
|
|
831 |
# date_preds = date_preds.cpu().numpy() |
|
|
832 |
# therapeutic_preds = therapeutic_preds.cpu().numpy() |
|
|
833 |
# sign_symptom_preds = sign_symptom_preds.cpu().numpy() |
|
|
834 |
# lab_value_preds = lab_value_preds.cpu().numpy() |
|
|
835 |
|
|
|
836 |
if label_ids is not None: |
|
|
837 |
label_ids = label_ids.cpu().numpy() |
|
|
838 |
|
|
|
839 |
return_output = (PredictionOutput(predictions=dise_preds, label_ids=label_ids), \ |
|
|
840 |
PredictionOutput(predictions=chem_preds, label_ids=label_ids), \ |
|
|
841 |
PredictionOutput(predictions=gene_preds, label_ids=label_ids), \ |
|
|
842 |
PredictionOutput(predictions=spec_preds, label_ids=label_ids), \ |
|
|
843 |
PredictionOutput(predictions=cl_preds, label_ids=label_ids), \ |
|
|
844 |
PredictionOutput(predictions=dna_preds, label_ids=label_ids), \ |
|
|
845 |
PredictionOutput(predictions=rna_preds, label_ids=label_ids), \ |
|
|
846 |
PredictionOutput(predictions=ct_preds, label_ids=label_ids)) |
|
|
847 |
# PredictionOutput(predictions=biological_preds, label_ids=label_ids), |
|
|
848 |
# PredictionOutput(predictions=diagnostic_preds, label_ids=label_ids), |
|
|
849 |
# PredictionOutput(predictions=duration_preds, label_ids=label_ids), |
|
|
850 |
# PredictionOutput(predictions=date_preds, label_ids=label_ids), |
|
|
851 |
# PredictionOutput(predictions=therapeutic_preds, label_ids=label_ids), |
|
|
852 |
# PredictionOutput(predictions=sign_symptom_preds, label_ids=label_ids), |
|
|
853 |
# PredictionOutput(predictions=lab_value_preds, label_ids=label_ids)) |
|
|
854 |
|
|
|
855 |
return return_output |
|
|
856 |
|
|
|
857 |
def align_predictions(self, predictions: np.ndarray) -> List[int]: |
|
|
858 |
preds = np.argmax(predictions, axis=2) |
|
|
859 |
batch_size, seq_len = preds.shape |
|
|
860 |
|
|
|
861 |
preds_list = [[] for _ in range(batch_size)] |
|
|
862 |
|
|
|
863 |
for i in range(batch_size): |
|
|
864 |
for j in range(seq_len): |
|
|
865 |
preds_list[i].append(preds[i][j]) |
|
|
866 |
|
|
|
867 |
return np.array(preds_list) |
|
|
868 |
|
|
|
869 |
def main(): |
|
|
870 |
os.environ["CUDA_VISIBLE_DEVICES"]="6" |
|
|
871 |
|
|
|
872 |
argparser = argparse.ArgumentParser() |
|
|
873 |
argparser.add_argument('--model_name_or_path', default='dmis-lab/bern2-ner') |
|
|
874 |
argparser.add_argument('--max_seq_length', type=int, help='The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded.', |
|
|
875 |
default=128) |
|
|
876 |
argparser.add_argument('--seed', type=int, help='random seed for initialization', |
|
|
877 |
default=1) |
|
|
878 |
args = argparser.parse_args() |
|
|
879 |
|
|
|
880 |
biomedner = BioMedNER(args) |
|
|
881 |
|
|
|
882 |
if __name__ == "__main__": |
|
|
883 |
main() |