|
a |
|
b/src/Matcher/database_builder.py |
|
|
1 |
# Import the load_dotenv function |
|
|
2 |
from dotenv import load_dotenv |
|
|
3 |
import os |
|
|
4 |
import json |
|
|
5 |
from langchain.docstore.document import Document |
|
|
6 |
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
|
7 |
from langchain_community.vectorstores import Chroma |
|
|
8 |
|
|
|
9 |
|
|
|
10 |
import json |
|
|
11 |
import os |
|
|
12 |
from langchain.docstore.document import Document |
|
|
13 |
|
|
|
14 |
embeddings = HuggingFaceEmbeddings(model_name="dmlls/all-mpnet-base-v2-negation") |
|
|
15 |
|
|
|
16 |
class TrialDatabaseBuilder: |
|
|
17 |
def __init__(self, json_directory, desired_fields, fields_to_concatenate): |
|
|
18 |
self.json_directory = json_directory |
|
|
19 |
self.desired_fields = desired_fields |
|
|
20 |
self.fields_to_concatenate = fields_to_concatenate |
|
|
21 |
self.docs = [] |
|
|
22 |
self.ids = [] |
|
|
23 |
|
|
|
24 |
def load_json_files(self): |
|
|
25 |
for filename in os.listdir(self.json_directory): |
|
|
26 |
if filename.endswith('.json'): |
|
|
27 |
file_path = os.path.join(self.json_directory, filename) |
|
|
28 |
with open(file_path, 'r') as file: |
|
|
29 |
json_data = json.load(file) |
|
|
30 |
extracted_data = {field: json_data.get(field) for field in self.desired_fields} |
|
|
31 |
self.ids.append(extracted_data["nct_id"]) |
|
|
32 |
|
|
|
33 |
metadata = { |
|
|
34 |
"id": extracted_data.get("nct_id", ""), |
|
|
35 |
"gender": extracted_data.get("gender", ""), |
|
|
36 |
"condition": extracted_data.get("condition", ""), |
|
|
37 |
"phase": extracted_data.get("phase", ""), |
|
|
38 |
"minimum_age": extracted_data.get("minimum_age", ""), |
|
|
39 |
"maximum_age": extracted_data.get("maximum_age", ""), |
|
|
40 |
|
|
|
41 |
} |
|
|
42 |
metadata = {k: v for k, v in metadata.items() if v is not None} |
|
|
43 |
|
|
|
44 |
concatenated_string = ', '.join(str(extracted_data[field]) for field in self.fields_to_concatenate) |
|
|
45 |
doc = Document(page_content=concatenated_string, metadata=metadata) |
|
|
46 |
self.docs.append(doc) |
|
|
47 |
|
|
|
48 |
def build_vectorstore(self): |
|
|
49 |
vectorstore = Chroma.from_documents(self.docs, embeddings, persist_directory="../../data/db/", collection_name="trials") |
|
|
50 |
vectorstore.persist() |
|
|
51 |
vectorstore = None |
|
|
52 |
|
|
|
53 |
|
|
|
54 |
class CriteriaDatabaseBuilder: |
|
|
55 |
def __init__(self, json_directory, desired_fields): |
|
|
56 |
self.json_directory = json_directory |
|
|
57 |
self.desired_fields = desired_fields |
|
|
58 |
self.docs = [] |
|
|
59 |
|
|
|
60 |
def load_json_files(self): |
|
|
61 |
for filename in os.listdir(self.json_directory): |
|
|
62 |
if filename.endswith('.json'): |
|
|
63 |
file_path = os.path.join(self.json_directory, filename) |
|
|
64 |
with open(file_path, 'r') as file: |
|
|
65 |
json_data = json.load(file) |
|
|
66 |
extracted_data = {field: json_data.get(field) for field in self.desired_fields} |
|
|
67 |
eligibility_criteria = json_data.get("eligibility") |
|
|
68 |
if eligibility_criteria is not None: |
|
|
69 |
for index, criterion in enumerate(eligibility_criteria): |
|
|
70 |
metadata = { |
|
|
71 |
"nct_id": extracted_data['nct_id'], |
|
|
72 |
"idx": index + 1, |
|
|
73 |
} |
|
|
74 |
metadata["criteria_type"] = criterion["entities_data"][0]["field"] |
|
|
75 |
for i, entity in enumerate(criterion["entities_data"]): |
|
|
76 |
for key, value in entity.items(): |
|
|
77 |
if key != "field": |
|
|
78 |
metadata[f"{key}_{i + 1}"] = value |
|
|
79 |
doc = Document(page_content=criterion["text"], metadata=metadata) |
|
|
80 |
self.docs.append(doc) |
|
|
81 |
|
|
|
82 |
def build_vectorstore(self): |
|
|
83 |
vectorstore = Chroma.from_documents(self.docs, embeddings, persist_directory="../../data/db/", collection_name="criteria") |
|
|
84 |
vectorstore.persist() |
|
|
85 |
vectorstore = None |
|
|
86 |
|
|
|
87 |
|
|
|
88 |
def main(): |
|
|
89 |
load_dotenv('../.env') |
|
|
90 |
openai_access_key = os.getenv('OPENAI_ACCESS_KEY') |
|
|
91 |
huggingface_token = os.getenv('HUGGINGFACEHUB_API_TOKEN') |
|
|
92 |
json_directory = '../../data/trials_jsons/' |
|
|
93 |
desired_fields_criteria = ["nct_id", "eligibility"] |
|
|
94 |
|
|
|
95 |
criteriadb_builder = CriteriaDatabaseBuilder(json_directory, desired_fields_criteria) |
|
|
96 |
criteriadb_builder.load_json_files() |
|
|
97 |
criteriadb_builder.build_vectorstore() |
|
|
98 |
|
|
|
99 |
desired_fields_trials=["nct_id", "brief_title", "brief_summary", "condition", "gender", "minimum_age", "maximum_age", "phase"] |
|
|
100 |
trialdb_builder = TrialDatabaseBuilder(json_directory, desired_fields_trials) |
|
|
101 |
trialdb_builder.load_json_files() |
|
|
102 |
trialdb_builder.build_vectorstore() |
|
|
103 |
|
|
|
104 |
|
|
|
105 |
if __name__ == "__main__": |
|
|
106 |
main() |
|
|
107 |
|
|
|
108 |
|