|
a |
|
b/src/Matcher/LangChain_structuting_queries.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 1, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"import getpass\n", |
|
|
10 |
"import os\n", |
|
|
11 |
"from dotenv import load_dotenv\n", |
|
|
12 |
"\n", |
|
|
13 |
"load_dotenv('../.env')\n", |
|
|
14 |
"openai_access_key = os.getenv('OPENAI_ACCESS_KEY')" |
|
|
15 |
] |
|
|
16 |
}, |
|
|
17 |
{ |
|
|
18 |
"cell_type": "code", |
|
|
19 |
"execution_count": null, |
|
|
20 |
"metadata": {}, |
|
|
21 |
"outputs": [], |
|
|
22 |
"source": [ |
|
|
23 |
"from typing import List, Literal, Union\n", |
|
|
24 |
"import datetime\n", |
|
|
25 |
"from typing import Literal, Optional, Tuple\n", |
|
|
26 |
"\n", |
|
|
27 |
"from langchain_core.pydantic_v1 import BaseModel, Field\n", |
|
|
28 |
"\n", |
|
|
29 |
"class Filter(BaseModel):\n", |
|
|
30 |
" field: Literal[\"Disease\", \"Gene\", \"Protein\", \"DNAMutation\", \"ProteinMutation\", \"SNP\", \"Cell_type\", \"Drug\", \"Sign_symptom\", \"Biological_structure\", \"Date\", \n", |
|
|
31 |
" \"Duration\", \"Time\", \"Frequency\", \"Severity\", \"Lab_value\", \"Dosage\", \"Diagnostic_procedure\", \"Therapeutic_procedure\", \n", |
|
|
32 |
" \"Medication\", \"Clinical_event\", \"Outcome\", \"History\", \"Subject\", \"Family_history\", \"Detailed_description\", \"Area\"]\n", |
|
|
33 |
" \n", |
|
|
34 |
" comparison: Literal[\"eq\", \"lt\", \"lte\", \"gt\", \"gte\"]\n", |
|
|
35 |
" value: Union[str] = Field(\n", |
|
|
36 |
" ...,\n", |
|
|
37 |
" description=\"If the field is Gene, write the official symbol from the NCBIGene knowledge bases\",\n", |
|
|
38 |
" )\n", |
|
|
39 |
"\n", |
|
|
40 |
"\n", |
|
|
41 |
"class Search(BaseModel):\n", |
|
|
42 |
" \"\"\"Search over a database of tutorial videos about a software library.\"\"\"\n", |
|
|
43 |
"\n", |
|
|
44 |
" content_search: str = Field(\n", |
|
|
45 |
" ...,\n", |
|
|
46 |
" description=\"Similarity search query applied to video transcripts.\",\n", |
|
|
47 |
" )\n", |
|
|
48 |
" title_search: str = Field(\n", |
|
|
49 |
" ...,\n", |
|
|
50 |
" description=(\n", |
|
|
51 |
" \"Alternate version of the content search query to apply to titles. \"\n", |
|
|
52 |
" \"Should be succinct and only include key words that could be in a clinical trial text\"\n", |
|
|
53 |
" \"title.\"\n", |
|
|
54 |
" ),\n", |
|
|
55 |
" )\n", |
|
|
56 |
" filters: List[Filter] = Field(\n", |
|
|
57 |
" default_factory=list,\n", |
|
|
58 |
" description=\"Filters over specific fields. Final condition is a logical conjunction of all filters.\",\n", |
|
|
59 |
" )\n", |
|
|
60 |
"\n", |
|
|
61 |
" def pretty_print(self) -> None:\n", |
|
|
62 |
" for field in self.__fields__:\n", |
|
|
63 |
" if getattr(self, field) is not None and getattr(self, field) != getattr(\n", |
|
|
64 |
" self.__fields__[field], \"default\", None\n", |
|
|
65 |
" ):\n", |
|
|
66 |
" print(f\"{field}: {getattr(self, field)}\")" |
|
|
67 |
] |
|
|
68 |
}, |
|
|
69 |
{ |
|
|
70 |
"cell_type": "code", |
|
|
71 |
"execution_count": null, |
|
|
72 |
"metadata": {}, |
|
|
73 |
"outputs": [], |
|
|
74 |
"source": [ |
|
|
75 |
"from langchain_core.prompts import ChatPromptTemplate\n", |
|
|
76 |
"from langchain_openai import ChatOpenAI\n", |
|
|
77 |
"\n", |
|
|
78 |
"system = \"\"\"You are an expert at converting user questions into database queries. \\\n", |
|
|
79 |
"You have access to a database of tutorial videos about a software library for building LLM-powered applications. \\\n", |
|
|
80 |
"Given a question, return a database query optimized to retrieve the most relevant results.\n", |
|
|
81 |
"\n", |
|
|
82 |
"If there are acronyms or words you are not familiar with, do not try to rephrase them.\"\"\"\n", |
|
|
83 |
"prompt = ChatPromptTemplate.from_messages(\n", |
|
|
84 |
" [\n", |
|
|
85 |
" (\"system\", system),\n", |
|
|
86 |
" (\"human\", \"{question}\"),\n", |
|
|
87 |
" ]\n", |
|
|
88 |
")\n", |
|
|
89 |
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n", |
|
|
90 |
"structured_llm = llm.with_structured_output(TutorialSearch)\n", |
|
|
91 |
"query_analyzer = prompt | structured_llm" |
|
|
92 |
] |
|
|
93 |
}, |
|
|
94 |
{ |
|
|
95 |
"cell_type": "code", |
|
|
96 |
"execution_count": null, |
|
|
97 |
"metadata": {}, |
|
|
98 |
"outputs": [], |
|
|
99 |
"source": [ |
|
|
100 |
"query_analyzer.invoke({\"question\": \"\"}).pretty_print()" |
|
|
101 |
] |
|
|
102 |
}, |
|
|
103 |
{ |
|
|
104 |
"cell_type": "code", |
|
|
105 |
"execution_count": null, |
|
|
106 |
"metadata": {}, |
|
|
107 |
"outputs": [], |
|
|
108 |
"source": [] |
|
|
109 |
} |
|
|
110 |
], |
|
|
111 |
"metadata": { |
|
|
112 |
"kernelspec": { |
|
|
113 |
"display_name": "base", |
|
|
114 |
"language": "python", |
|
|
115 |
"name": "python3" |
|
|
116 |
}, |
|
|
117 |
"language_info": { |
|
|
118 |
"codemirror_mode": { |
|
|
119 |
"name": "ipython", |
|
|
120 |
"version": 3 |
|
|
121 |
}, |
|
|
122 |
"file_extension": ".py", |
|
|
123 |
"mimetype": "text/x-python", |
|
|
124 |
"name": "python", |
|
|
125 |
"nbconvert_exporter": "python", |
|
|
126 |
"pygments_lexer": "ipython3", |
|
|
127 |
"version": "3.11.4" |
|
|
128 |
} |
|
|
129 |
}, |
|
|
130 |
"nbformat": 4, |
|
|
131 |
"nbformat_minor": 2 |
|
|
132 |
} |