|
a |
|
b/src/DataLoader/download.py |
|
|
1 |
import requests |
|
|
2 |
import sys |
|
|
3 |
import xml.etree.ElementTree as ET |
|
|
4 |
import os |
|
|
5 |
import time |
|
|
6 |
import joblib |
|
|
7 |
from tqdm.auto import tqdm |
|
|
8 |
import numpy as np |
|
|
9 |
from tenacity import retry, wait_random_exponential, stop_after_attempt |
|
|
10 |
|
|
|
11 |
# # Open the log file |
|
|
12 |
# log_file = open('../logs/download.log', 'w') |
|
|
13 |
# # Redirect standard output to the log file |
|
|
14 |
# sys.stdout = log_file |
|
|
15 |
|
|
|
16 |
def normalize_whitespace(s): |
|
|
17 |
return ' '.join(s.split()) |
|
|
18 |
|
|
|
19 |
|
|
|
20 |
@retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(10)) |
|
|
21 |
def get_cancer_trials_list(max_trials=15000): |
|
|
22 |
base_url = "https://clinicaltrials.gov/api/query/full_studies" |
|
|
23 |
trials_set = set() |
|
|
24 |
page_size = 100 # Number of trials per page |
|
|
25 |
current_rank = 1 |
|
|
26 |
trials_fetched = 0 |
|
|
27 |
while trials_fetched < max_trials: |
|
|
28 |
search_params = { |
|
|
29 |
"expr": "((cancer) OR (neoplasm)) AND ((interventional) OR (treatment)) AND ((mutation) OR (variant))", |
|
|
30 |
"min_rnk": current_rank, |
|
|
31 |
"max_rnk": current_rank + page_size - 1, |
|
|
32 |
"fmt": "json", |
|
|
33 |
"fields": "NCTId" |
|
|
34 |
} |
|
|
35 |
response = requests.get(base_url, params=search_params) |
|
|
36 |
if response.status_code == 200: |
|
|
37 |
trials_data = response.json() |
|
|
38 |
if "FullStudiesResponse" in trials_data: |
|
|
39 |
studies = trials_data["FullStudiesResponse"]["FullStudies"] |
|
|
40 |
if not studies: |
|
|
41 |
break # No more studies found, exit the loop |
|
|
42 |
for study in studies: |
|
|
43 |
trials_set.add(study["Study"]["ProtocolSection"]["IdentificationModule"]["NCTId"]) |
|
|
44 |
trials_fetched += 1 |
|
|
45 |
if trials_fetched == max_trials: |
|
|
46 |
break |
|
|
47 |
current_rank += page_size |
|
|
48 |
else: |
|
|
49 |
print("No trials found matching the criteria.") |
|
|
50 |
break |
|
|
51 |
else: |
|
|
52 |
print("Failed to retrieve data. Status code:", response.status_code) |
|
|
53 |
break |
|
|
54 |
|
|
|
55 |
return list(trials_set) # Convert set to list for output |
|
|
56 |
|
|
|
57 |
|
|
|
58 |
def download_study_info(nct_id): |
|
|
59 |
local_file_path = f"../data/trials_xmls/{nct_id}.xml" |
|
|
60 |
|
|
|
61 |
if os.path.exists(local_file_path): |
|
|
62 |
# Read the content of the existing local XML file |
|
|
63 |
with open(local_file_path, "r") as f: |
|
|
64 |
local_xml_content = f.read() |
|
|
65 |
try: |
|
|
66 |
local_root = ET.fromstring(local_xml_content) |
|
|
67 |
except ET.ParseError as e: |
|
|
68 |
print(f"Error parsing XML for trial {nct_id}: {e}") |
|
|
69 |
os.remove(local_file_path) |
|
|
70 |
# Download the online version of the XML |
|
|
71 |
url = f"https://clinicaltrials.gov/ct2/show/{nct_id}?displayxml=true" |
|
|
72 |
try: |
|
|
73 |
response = requests.get(url) |
|
|
74 |
except requests.exceptions.RequestException as e: |
|
|
75 |
print(f"Error fetching XML for trial {nct_id}: {e}") |
|
|
76 |
|
|
|
77 |
if response.status_code == 200: |
|
|
78 |
online_xml_content = response.text |
|
|
79 |
# Parse the XML content |
|
|
80 |
try: |
|
|
81 |
online_root = ET.fromstring(online_xml_content) |
|
|
82 |
except ET.ParseError as e: |
|
|
83 |
print(f"Error parsing online XML for trial {nct_id}: {e}") |
|
|
84 |
|
|
|
85 |
else: |
|
|
86 |
print(f"Error: received status code {response.status_code} when fetching XML for trial {nct_id}") |
|
|
87 |
|
|
|
88 |
to_check = ["eligibility", "brief_title", "overall_status", "location"] |
|
|
89 |
|
|
|
90 |
local_version = [] |
|
|
91 |
online_version = [] |
|
|
92 |
|
|
|
93 |
for s in to_check: |
|
|
94 |
local_elem = local_root.find(".//%s" % s) |
|
|
95 |
online_elem = online_root.find(".//%s" % s) |
|
|
96 |
|
|
|
97 |
# Check if the element exists in both versions |
|
|
98 |
if local_elem is not None and online_elem is not None: |
|
|
99 |
local_version.append(local_elem) |
|
|
100 |
online_version.append(online_elem) |
|
|
101 |
else: |
|
|
102 |
continue |
|
|
103 |
|
|
|
104 |
is_updated = any([normalize_whitespace(ET.tostring(a, encoding='unicode').strip()) != |
|
|
105 |
normalize_whitespace(ET.tostring(b, encoding='unicode').strip()) |
|
|
106 |
for a, b in zip(local_version, online_version)]) |
|
|
107 |
|
|
|
108 |
if is_updated: |
|
|
109 |
# Update the local XML with the online version |
|
|
110 |
with open(local_file_path, "w") as f: |
|
|
111 |
f.write(ET.tostring(online_root, encoding='unicode')) |
|
|
112 |
print(f"Updated eligibility criteria for {nct_id}") |
|
|
113 |
else: |
|
|
114 |
print(f"No changes in eligibility criteria for {nct_id}.") |
|
|
115 |
else: |
|
|
116 |
# If the local file doesn't exist, download the online version |
|
|
117 |
url = f"https://clinicaltrials.gov/ct2/show/{nct_id}?displayxml=true" |
|
|
118 |
try: |
|
|
119 |
response = requests.get(url) |
|
|
120 |
except requests.exceptions.RequestException as e: |
|
|
121 |
print(f"Error fetching XML for trial {nct_id}: {e}") |
|
|
122 |
|
|
|
123 |
if response.status_code == 200: |
|
|
124 |
try: |
|
|
125 |
root = ET.fromstring(response.text) |
|
|
126 |
with open(local_file_path, "w") as f: |
|
|
127 |
f.write(ET.tostring(root, encoding='unicode')) |
|
|
128 |
print(f"Study information downloaded for {nct_id}") |
|
|
129 |
except ET.ParseError as e: |
|
|
130 |
print(f"Error parsing online XML for trial {nct_id}: {e}") |
|
|
131 |
else: |
|
|
132 |
print(f"Error: received status code {response.status_code} when fetching XML for trial {nct_id}") |
|
|
133 |
return [] |
|
|
134 |
|
|
|
135 |
|
|
|
136 |
|
|
|
137 |
memory = joblib.Memory(".") |
|
|
138 |
def ParallelExecutor(use_bar="tqdm", **joblib_args): |
|
|
139 |
"""Utility for tqdm progress bar in joblib.Parallel""" |
|
|
140 |
all_bar_funcs = { |
|
|
141 |
"tqdm": lambda args: lambda x: tqdm(x, **args), |
|
|
142 |
"False": lambda args: iter, |
|
|
143 |
"None": lambda args: iter, |
|
|
144 |
} |
|
|
145 |
def aprun(bar=use_bar, **tq_args): |
|
|
146 |
def tmp(op_iter): |
|
|
147 |
if str(bar) in all_bar_funcs.keys(): |
|
|
148 |
bar_func = all_bar_funcs[str(bar)](tq_args) |
|
|
149 |
else: |
|
|
150 |
raise ValueError("Value %s not supported as bar type" % bar) |
|
|
151 |
|
|
|
152 |
# Pass n_jobs from joblib_args |
|
|
153 |
return joblib.Parallel(n_jobs=joblib_args.get("n_jobs", 10))(bar_func(op_iter)) |
|
|
154 |
|
|
|
155 |
return tmp |
|
|
156 |
return aprun |
|
|
157 |
|
|
|
158 |
def parallel_downloader( |
|
|
159 |
n_jobs, |
|
|
160 |
nct_ids, |
|
|
161 |
): |
|
|
162 |
parallel_runner = ParallelExecutor(n_jobs=n_jobs)(total=len(nct_ids)) |
|
|
163 |
X = parallel_runner( |
|
|
164 |
joblib.delayed(download_study_info)( |
|
|
165 |
nct_id, |
|
|
166 |
) |
|
|
167 |
for nct_id in nct_ids |
|
|
168 |
) |
|
|
169 |
updated_cts = np.vstack(X).flatten() |
|
|
170 |
return updated_cts |
|
|
171 |
|
|
|
172 |
|
|
|
173 |
class Downloader: |
|
|
174 |
def __init__(self, id_list, n_jobs): |
|
|
175 |
self.id_list = id_list |
|
|
176 |
self.n_jobs = n_jobs |
|
|
177 |
|
|
|
178 |
def download_and_update_trials(self): |
|
|
179 |
start_time = time.time() |
|
|
180 |
updated_cts = parallel_downloader(self.n_jobs, self.id_list) |
|
|
181 |
end_time = time.time() |
|
|
182 |
elapsed_time = end_time - start_time |
|
|
183 |
print(f"Elapsed time: {elapsed_time} seconds") |
|
|
184 |
return updated_cts |
|
|
185 |
|
|
|
186 |
|
|
|
187 |
if __name__ == "__main__": |
|
|
188 |
id_list = [...] # Replace [...] with your list of IDs |
|
|
189 |
n_jobs = ... # Replace ... with the number of parallel jobs |
|
|
190 |
downloader = Downloader(id_list, n_jobs) |
|
|
191 |
downloader.download_and_update_trials() |
|
|
192 |
|