clear, clc;
% This is an example for running the function fusedLeastR
%
%% Problem
%
% min 1/2 || A x - y||^2 + rho * ||x||_1 +
% opts.fusedPenalty * sum_i |x_i-x_{i+1}|
%
% For detailed description of the function, please refer to the Manual.
%
%% Related papers
%
% [1] Jun Liu, Lei Yuan, and Jieping Ye, An Efficient Algorithm for
% a Class of Fused Lasso Problems, KDD, 2010.
%
%% ------------ History --------------------
%
% First version on 14 November 2009.
%
% For any problem, please contact Jun Liu (j.liu@asu.edu)
cd ..
cd ..
root=cd;
addpath(genpath([root '/SLEP']));
% add the functions in the folder SLEP to the path
% change to the original folder
cd Examples/fusedLasso;
m=100; n=1000; % The data matrix is of size m x n
% for reproducibility
randNum=1;
% ---------------------- Generate random data ----------------------
randn('state',(randNum-1)*3+1);
A=randn(m,n); % the data matrix
randn('state',(randNum-1)*3+2);
xOrin=randn(n,1);
randn('state',(randNum-1)*3+3);
noise=randn(m,1);
y=A*xOrin +...
noise*0.01; % the response
rho=0.001; % the regularization parameter
% it is a ratio between (0,1), if .rFlag=1
%----------------------- Set optional items ------------------------
opts=[];
% Starting point
opts.init=2; % starting from a zero point
% termination criterion
opts.tFlag=5; % run .maxIter iterations
opts.maxIter=500; % maximum number of iterations
% normalization
opts.nFlag=0; % without normalization
% regularization
opts.rFlag=1; % the input parameter 'rho' is a ratio in (0, 1)
%opts.rsL2=0.01; % the squared two norm term
% fused penalty
opts.fusedPenalty=0.01;
% line search
opts.lFlag=0;
%----------------------- Run the code LeastR -----------------------
tic;
[x1, funVal1, ValueL1]= fusedLeastR(A, y, rho, opts);
toc;
figure;
plot(funVal1,'-.b');
xlabel('Iteration (i)');
ylabel('The objective function value');