[95bb1e]: / SLEP_package_4.1 / Examples / L1 / example_LogisticC.m

Download this file

110 lines (90 with data), 3.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
clear, clc;
% This is an example for running the function LogisticC
%
% Problem:
%
% min f(x,c) = - weight_i * log (p_i) + 1/2 * rsL2 * ||x||_2^2
% s.t. \|x\|_1 <=z
%
% a_i denotes a training sample,
% and a_i' corresponds to the i-th row of the data matrix A
%
% y_i (either 1 or -1) is the response
%
% p_i= 1/ (1+ exp(-y_i (x' * a_i + c) ) ) denotes the probability
%
% weight_i denotes the weight for the i-th sample
%
% For detailed description of the function, please refer to the Manual.
%
%% Related papers
%
% [1] Jun Liu and Jieping Ye, Efficient Euclidean Projections
% in Linear Time, ICML 2009.
%
% [2] Jun Liu and Jieping Ye, Sparse Learning with Efficient Euclidean
% Projections onto the L1 Ball, Technical Report ASU, 2008.
%
% [3] Jun Liu, Jianhui Chen, and Jieping Ye,
% Large-Scale Sparse Logistic Regression, KDD, 2009.
%
%% ------------ History --------------------
%
% First version on August 10, 2009.
%
% September 5, 2009: adaptive line search is added
%
% For any problem, please contact Jun Liu (j.liu@asu.edu)
cd ..
cd ..
root=cd;
addpath(genpath([root '/SLEP']));
% add the functions in the folder SLEP to the path
% change to the original folder
cd Examples/L1;
m=1000; n=1000; % The data matrix is of size m x n
randNum=1; % a random number
% ---------------------- generate random data ----------------------
randn('state',(randNum-1)*3+1);
A=randn(m,n); % the data matrix
y=[ones(n/2,1);...
-ones(n/2, 1)]; % the response
z=40; % the radius of the L1 ball
%----------------------- Set optional items -----------------------
opts=[];
% Starting point
opts.init=2; % starting from a zero point
% Termination
opts.tFlag=5; % run .maxIter iterations
opts.maxIter=40; % maximum number of iterations
% Normalization
opts.nFlag=0; % without normalization
% Regularization
opts.rsL2=0; % the squared two norm term
% Group Property
opts.sWeight=[1,1]; % set the weight for positive and negative samples
%----------------------- Run the code LogisticC -----------------------
fprintf('\n lFlag=0 \n');
opts.lFlag=0; % Nemirovski's line search
tic;
[x1, c1,funVal1, ValueL1]= LogisticC(A, y, z, opts);
toc;
fprintf('\n lFlag=1 \n');
opts.lFlag=1; % adaptive line search
opts.tFlag=2; opts.tol= funVal1(end);
tic;
[x2, c2, funVal2, ValueL2]= LogisticC(A, y, z, opts);
toc;
figure;
plot(funVal1,'-r');
hold on;
plot(funVal2,'--b');
legend('lFlag=0', 'lFlag=1');
xlabel('Iteration (i)');
ylabel('The objective function value');
% --------------------- compute the pathwise solutions ----------------
opts.fName='LogisticC'; % set the function name to 'LogisticC'
Z=[10, 20, 30, 40]; % set the parameters
% run the function pathSolutionLogistic
fprintf('\n Compute the pathwise solutions, please wait...');
[X,C]=pathSolutionLogistic(A, y, Z, opts);