[95bb1e]: / SLEP_package_4.1 / Examples / L1 / example_LeastR.m

Download this file

117 lines (95 with data), 3.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
clear, clc;
% This is an example for running the function LeastR
%
% min 1/2 || A x - y||^2 + 1/2 * rsL2 * ||x||_2^2 + rho * ||x||_1
%
% For detailed description of the function, please refer to the Manual.
%
%% Related papers
%
% [1] Jun Liu and Jieping Ye, Efficient Euclidean Projections
% in Linear Time, ICML 2009.
%
% [2] Jun Liu and Jieping Ye, Sparse Learning with Efficient Euclidean
% Projections onto the L1 Ball, Technical Report ASU, 2008.
%
% [3] Jun Liu, Jianhui Chen, and Jieping Ye,
% Large-Scale Sparse Logistic Regression, KDD, 2009.
%
%% ------------ History --------------------
%
% First version on August 10, 2009.
%
% September 5, 2009: adaptive line search is added
%
% For any problem, please contact Jun Liu (j.liu@asu.edu)
cd ..
cd ..
root=cd;
addpath(genpath([root '/SLEP']));
% add the functions in the folder SLEP to the path
% change to the original folder
cd Examples/L1;
m=1000; n=1000; % The data matrix is of size m x n
% for reproducibility
randNum=1;
% ---------------------- Generate random data ----------------------
randn('state',(randNum-1)*3+1);
A=randn(m,n); % the data matrix
randn('state',(randNum-1)*3+2);
xOrin=randn(n,1);
randn('state',(randNum-1)*3+3);
noise=randn(m,1);
y=A*xOrin +...
noise*0.01; % the response
rho=0.2; % the regularization parameter
% it is a ratio between (0,1), if .rFlag=1
%----------------------- Set optional items ------------------------
opts=[];
% Starting point
opts.init=2; % starting from a zero point
% termination criterion
opts.tFlag=5; % run .maxIter iterations
opts.maxIter=100; % maximum number of iterations
% normalization
opts.nFlag=0; % without normalization
% regularization
opts.rFlag=1; % the input parameter 'rho' is a ratio in (0, 1)
%opts.rsL2=0.01; % the squared two norm term
%----------------------- Run the code LeastR -----------------------
fprintf('\n mFlag=0, lFlag=0 \n');
opts.mFlag=0; % treating it as compositive function
opts.lFlag=0; % Nemirovski's line search
tic;
[x1, funVal1, ValueL1]= LeastR(A, y, rho, opts);
toc;
opts.maxIter=1000;
fprintf('\n mFlag=1, lFlag=0 \n');
opts.mFlag=1; % smooth reformulation
opts.lFlag=0; % Nemirovski's line search
opts.tFlag=2; opts.tol= funVal1(end);
tic;
[x2, funVal2, ValueL2]= LeastR(A, y, rho, opts);
toc;
fprintf('\n mFlag=1, lFlag=1 \n');
opts.mFlag=1; % smooth reformulation
opts.lFlag=1; % adaptive line search
opts.tFlag=2; opts.tol= funVal1(end);
tic;
[x3, funVal3, ValueL3]= LeastR(A, y, rho, opts);
toc;
figure;
plot(funVal1,'-r');
hold on;
plot(funVal2,'--b');
hold on;
plot(funVal3,':g');
legend('mFlag=0, lFlag=0', 'mFlag=1, lFlag=0', 'mFlag=1, lFlag=1');
xlabel('Iteration (i)');
ylabel('The objective function value');
% % --------------------- compute the pathwise solutions ----------------
opts.fName='LeastR'; % set the function name to 'LeastR'
Z=[0.5, 0.2, 0.1, 0.01]; % set the parameters
% run the function pathSolutionLeast
fprintf('\n Compute the pathwise solutions, please wait...');
X=pathSolutionLeast(A, y, Z, opts);