function [x, funVal, ValueL]=tree_LeastR(A, y, z, opts)
%
%%
% Function tree_LeastR
% Least Squares Loss with the
% tree structured group Lasso Regularization
%
%% Problem
%
% min 1/2 || A x - y||^2 + z * sum_j w_j ||x_{G_j}||
%
% G_j's are nodes with tree structure
%
% The tree overlapping group information is contained in
% opts.ind, which is a 3 x nodes matrix, where nodes denotes the number of
% nodes of the tree.
%
% opts.ind(1,:) contains the starting index
% opts.ind(2,:) contains the ending index
% opts.ind(3,:) contains the corresponding weight (w_j)
%
% Note:
% 1) If each element of x is a leaf node of the tree and the weight for
% this leaf node are the same, we provide an alternative "efficient" input
% for this kind of node, by creating a "super node" with
% opts.ind(1,1)=-1; opts.ind(2,1)=-1; and opts.ind(3,1)=the common weight.
%
% 2) If the features are well ordered in that, the features of the left
% tree is always less than those of the right tree, opts.ind(1,:) and
% opts.ind(2,:) contain the "real" starting and ending indices. That is to
% say, x( opts.ind(1,j):opts.ind(2,j) ) denotes x_{G_j}. In this case,
% the entries in opts.ind(1:2,:) are within 1 and n.
%
%
% If the features are not well ordered, please use the input opts.G for
% specifying the index so that
% x( opts.G ( opts.ind(1,j):opts.ind(2,j) ) ) denotes x_{G_j}.
% In this case, the entries of opts.G are within 1 and n, and the entries of
% opts.ind(1:2,:) are within 1 and length(opts.G).
%
% The following example shows how G and ind works:
%
% G={ {1, 2}, {4, 5}, {3, 6}, {7, 8},
% {1, 2, 3, 6}, {4, 5, 7, 8},
% {1, 2, 3, 4, 5, 6, 7, 8} }.
%
% ind={ [1, 2, 100]', [3, 4, 100]', [5, 6, 100]', [7, 8, 100]',
% [9, 12, 100]', [13, 16, 100]', [17, 24, 100]' },
%
% where each node has a weight of 100.
%
%
%% Input parameters:
%
% A- Matrix of size m x n
% A can be a dense matrix
% a sparse matrix
% or a DCT matrix
% y - Response vector (of size mx1)
% z - Tree Structure regularization parameter (z >=0)
% opts- optional inputs (default value: opts=[])
%
%% Output parameters:
%
% x- Solution
% funVal- Function value during iterations
%
%% Copyright (C) 2010-2011 Jun Liu, and Jieping Ye
%
% You are suggested to first read the Manual.
%
% For any problem, please contact with Jun Liu via j.liu@asu.edu
%
% Last modified on October 3, 2010.
%
%% Related papers
%
% [1] Jun Liu and Jieping Ye, Moreau-Yosida Regularization for
% Grouped Tree Structure Learning, NIPS 2010
%
%% Related functions:
%
% sll_opts
%
%%
%% Verify and initialize the parameters
%%
if (nargin <4)
error('\n Inputs: A, y, z, and opts.ind should be specified!\n');
end
[m,n]=size(A);
if (length(y) ~=m)
error('\n Check the length of y!\n');
end
if (z<0)
error('\n z should be nonnegative!\n');
end
opts=sll_opts(opts); % run sll_opts to set default values (flags)
% restart the program for better efficiency
% this is a newly added function
if (~isfield(opts,'rStartNum'))
opts.rStartNum=opts.maxIter;
else
if (opts.rStartNum<=0)
opts.rStartNum=opts.maxIter;
end
end
%% Detailed initialization
%% Normalization
% Please refer to sll_opts for the definitions of mu, nu and nFlag
%
% If .nFlag =1, the input matrix A is normalized to
% A= ( A- repmat(mu, m,1) ) * diag(nu)^{-1}
%
% If .nFlag =2, the input matrix A is normalized to
% A= diag(nu)^{-1} * ( A- repmat(mu, m,1) )
%
% Such normalization is done implicitly
% This implicit normalization is suggested for the sparse matrix
% but not for the dense matrix
%
if (opts.nFlag~=0)
if (isfield(opts,'mu'))
mu=opts.mu;
if(size(mu,2)~=n)
error('\n Check the input .mu');
end
else
mu=mean(A,1);
end
if (opts.nFlag==1)
if (isfield(opts,'nu'))
nu=opts.nu;
if(size(nu,1)~=n)
error('\n Check the input .nu!');
end
else
nu=(sum(A.^2,1)/m).^(0.5); nu=nu';
end
else % .nFlag=2
if (isfield(opts,'nu'))
nu=opts.nu;
if(size(nu,1)~=m)
error('\n Check the input .nu!');
end
else
nu=(sum(A.^2,2)/n).^(0.5);
end
end
ind_zero=find(abs(nu)<= 1e-10); nu(ind_zero)=1;
% If some values in nu is typically small, it might be that,
% the entries in a given row or column in A are all close to zero.
% For numerical stability, we set the corresponding value to 1.
end
if (~issparse(A)) && (opts.nFlag~=0)
fprintf('\n -----------------------------------------------------');
fprintf('\n The data is not sparse or not stored in sparse format');
fprintf('\n The code still works.');
fprintf('\n But we suggest you to normalize the data directly,');
fprintf('\n for achieving better efficiency.');
fprintf('\n -----------------------------------------------------');
end
%% Group & Others
% Initialize ind
if (~isfield(opts,'ind'))
error('\n In tree_LeastR, the field .ind should be specified');
else
ind=opts.ind;
if (size(ind,1)~=3)
error('\n Check opts.ind');
end
end
GFlag=0;
% if GFlag=1, we shall apply general_altra
if (isfield(opts,'G'))
GFlag=1;
G=opts.G;
if (max(G) >n || max(G) <1)
error('\n The input G is incorrect. It should be within %d and %d',1,n);
end
end
%% Starting point initialization
% compute AT y
if (opts.nFlag==0)
ATy =A'*y;
elseif (opts.nFlag==1)
ATy= A'*y - sum(y) * mu'; ATy=ATy./nu;
else
invNu=y./nu; ATy=A'*invNu-sum(invNu)*mu';
end
% process the regularization parameter
if (opts.rFlag==0)
lambda=z;
else % z here is the scaling factor lying in [0,1]
% if (z<0 || z>1)
% error('\n opts.rFlag=1, and z should be in [0,1]');
% end
computedFlag=0;
if (isfield(opts,'lambdaMax'))
if (opts.lambdaMax~=-1)
lambda=z*opts.lambdaMax;
computedFlag=1;
end
end
if (~computedFlag)
if (GFlag==0)
lambda_max=findLambdaMax(ATy, n, ind, size(ind,2));
else
lambda_max=general_findLambdaMax(ATy, n, G, ind, size(ind,2));
end
% As .rFlag=1, we set lambda as a ratio of lambda_max
lambda=z*lambda_max;
end
end
% The following is for computing lambdaMax
% we use opts.lambdaMax=-1 to show that we need the computation.
%
% One can use this for setting up opts.lambdaMax
if (isfield(opts,'lambdaMax'))
if (opts.lambdaMax==-1)
if (GFlag==0)
lambda_max=findLambdaMax(ATy, n, ind, size(ind,2));
else
lambda_max=general_findLambdaMax(ATy, n, G, ind, size(ind,2));
end
x=lambda_max;
funVal=lambda_max;
ValueL=lambda_max;
return;
end
end
% initialize a starting point
if opts.init==2
x=zeros(n,1);
else
if isfield(opts,'x0')
x=opts.x0;
if (length(x)~=n)
error('\n Check the input .x0');
end
else
x=ATy; % if .x0 is not specified, we use ratio*ATy,
% where ratio is a positive value
end
end
% compute A x
if (opts.nFlag==0)
Ax=A* x;
elseif (opts.nFlag==1)
invNu=x./nu; mu_invNu=mu * invNu;
Ax=A*invNu -repmat(mu_invNu, m, 1);
else
Ax=A*x-repmat(mu*x, m, 1); Ax=Ax./nu;
end
if (opts.init==0)
% ------ This function is not available
%
% If .init=0, we set x=ratio*x by "initFactor"
% Please refer to the function initFactor for detail
%
% Here, we only support starting from zero, due to the complex tree
% structure
x=zeros(n,1);
end
%% The main program
% The Armijo Goldstein line search schemes + accelearted gradient descent
bFlag=0; % this flag tests whether the gradient step only changes a little
if (opts.mFlag==0 && opts.lFlag==0)
L=1;
% We assume that the maximum eigenvalue of A'A is over 1
% assign xp with x, and Axp with Ax
xp=x; Axp=Ax; xxp=zeros(n,1);
alphap=0; alpha=1;
for iterStep=1:opts.maxIter
% --------------------------- step 1 ---------------------------
% compute search point s based on xp and x (with beta)
beta=(alphap-1)/alpha; s=x + beta* xxp;
% --------------------------- step 2 ---------------------------
% line search for L and compute the new approximate solution x
% compute the gradient (g) at s
As=Ax + beta* (Ax-Axp);
% compute AT As
if (opts.nFlag==0)
ATAs=A'*As;
elseif (opts.nFlag==1)
ATAs=A'*As - sum(As) * mu'; ATAs=ATAs./nu;
else
invNu=As./nu; ATAs=A'*invNu-sum(invNu)*mu';
end
% obtain the gradient g
g=ATAs-ATy;
% copy x and Ax to xp and Axp
xp=x; Axp=Ax;
while (1)
% let s walk in a step in the antigradient of s to get v
% and then do the L1/Lq-norm regularized projection
v=s-g/L;
% tree overlapping group Lasso projection
ind_work(1:2,:)=ind(1:2,:);
ind_work(3,:)=ind(3,:) * (lambda / L);
if (GFlag==0)
x=altra(v, n, ind_work, size(ind_work,2));
else
x=general_altra(v, n, G, ind_work, size(ind_work,2));
end
v=x-s; % the difference between the new approximate solution x
% and the search point s
% compute A x
if (opts.nFlag==0)
Ax=A* x;
elseif (opts.nFlag==1)
invNu=x./nu; mu_invNu=mu * invNu;
Ax=A*invNu -repmat(mu_invNu, m, 1);
else
Ax=A*x-repmat(mu*x, m, 1); Ax=Ax./nu;
end
Av=Ax -As;
r_sum=v'*v; l_sum=Av'*Av;
if (r_sum <=1e-20)
bFlag=1; % this shows that, the gradient step makes little improvement
break;
end
% the condition is ||Av||_2^2 <= L * ||v||_2^2
if(l_sum <= r_sum * L)
break;
else
L=max(2*L, l_sum/r_sum);
%fprintf('\n L=%5.6f',L);
end
end
% --------------------------- step 3 ---------------------------
% update alpha and alphap, and check whether converge
alphap=alpha; alpha= (1+ sqrt(4*alpha*alpha +1))/2;
xxp=x-xp; Axy=Ax-y;
ValueL(iterStep)=L;
% compute the regularization part
if (GFlag==0)
tree_norm=treeNorm(x, n, ind, size(ind,2));
else
tree_norm=general_treeNorm(x, n, G, ind, size(ind,2));
end
% function value = loss + regularizatioin
funVal(iterStep)=Axy'* Axy/2 + lambda * tree_norm;
if (bFlag)
% fprintf('\n The program terminates as the gradient step changes the solution very small.');
break;
end
switch(opts.tFlag)
case 0
if iterStep>=2
if (abs( funVal(iterStep) - funVal(iterStep-1) ) <= opts.tol)
break;
end
end
case 1
if iterStep>=2
if (abs( funVal(iterStep) - funVal(iterStep-1) ) <=...
opts.tol* funVal(iterStep-1))
break;
end
end
case 2
if ( funVal(iterStep)<= opts.tol)
break;
end
case 3
norm_xxp=sqrt(xxp'*xxp);
if ( norm_xxp <=opts.tol)
break;
end
case 4
norm_xp=sqrt(xp'*xp); norm_xxp=sqrt(xxp'*xxp);
if ( norm_xxp <=opts.tol * max(norm_xp,1))
break;
end
case 5
if iterStep>=opts.maxIter
break;
end
end
% restart the program every opts.rStartNum
if (~mod(iterStep, opts.rStartNum))
alphap=0; alpha=1;
xp=x; Axp=Ax; xxp=zeros(n,1); L =L/2;
end
end
else
error('\n The function does not support opts.mFlag neq 0 & opts.lFlag neq 0!');
end