|
a |
|
b/STM_HFS.m |
|
|
1 |
function [Sol_MT] = STM_HFS(Xs, ys, Lambda, opts) |
|
|
2 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
3 |
%% Implementation of the sequential HFS rule for STM |
|
|
4 |
%% input: |
|
|
5 |
% Xs: |
|
|
6 |
% Xs{i} stores the data matrix of the i-th task, each column corresponds to a feature |
|
|
7 |
% each row corresponds to a data instance |
|
|
8 |
% |
|
|
9 |
% ys: |
|
|
10 |
% ys{i} strores the response vector of the i-th task |
|
|
11 |
% |
|
|
12 |
% Lambda: |
|
|
13 |
% the parameter values of lambda |
|
|
14 |
% |
|
|
15 |
% opts: |
|
|
16 |
% settings for the solver |
|
|
17 |
%% output: |
|
|
18 |
% Sol: |
|
|
19 |
% the solution; Sol(:,:,i) stores the the |
|
|
20 |
% solution for the ith values in Lambda |
|
|
21 |
% |
|
|
22 |
%% For any problem, please contact Weizhong Zhang (zhangweizhongzju@gmail.com) |
|
|
23 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
24 |
|
|
|
25 |
%% |
|
|
26 |
|
|
|
27 |
% -------------------------- pass parameters ---------------------------- % |
|
|
28 |
p = size(Xs{1}, 2); |
|
|
29 |
T_num = length(Xs); % number of tasks |
|
|
30 |
npar = length(Lambda); % number of parameter values of lambda |
|
|
31 |
ind = opts.ind; |
|
|
32 |
ind_MT = TreeTransform(ind, T_num); |
|
|
33 |
%clear('ind'); |
|
|
34 |
opts.init=1; % starting from a zero point |
|
|
35 |
if opts.tFlag==2 |
|
|
36 |
funVal = opts.funVal; |
|
|
37 |
end |
|
|
38 |
|
|
|
39 |
|
|
|
40 |
|
|
|
41 |
% --------------------- recover tree structure for Multi Task-------------------------- % |
|
|
42 |
eind_MT = find(ind_MT(2,:) == p*T_num); |
|
|
43 |
if ind_MT(1,1) == -1 % find the depth of the tree |
|
|
44 |
d_MT = length(eind_MT); |
|
|
45 |
nnl_MT = [p*T_num,eind_MT(1)-1,diff(eind_MT)]; % number of nodes per layer |
|
|
46 |
nnind_MT = [0,1,eind_MT]; % ind(1,nnind1(i)+1:nnind(i+1)) stores the node from the ith layer |
|
|
47 |
else |
|
|
48 |
d_MT = length(eind_MT)-1; |
|
|
49 |
nnl_MT = [eind_MT(1),diff(eind_MT)]; |
|
|
50 |
nnind_MT = [0,eind_MT]; |
|
|
51 |
end |
|
|
52 |
|
|
|
53 |
|
|
|
54 |
% --------------------- initialize the output --------------------------- % |
|
|
55 |
Sol_MT = zeros(p,T_num,npar); |
|
|
56 |
ind_zf_MT = false(p*T_num,d_MT,npar); |
|
|
57 |
tsolver_MT = zeros(1,npar);%should be changed |
|
|
58 |
tscreen_MT = zeros(1,npar); |
|
|
59 |
|
|
|
60 |
% ------------------- compute the effective region of lambda ------------ % |
|
|
61 |
Xsys_MT = Xsys_MT_cal(Xs, ys); |
|
|
62 |
%lambda_max=findLambdaMax(X'*y, p, ind, size(ind,2)); % why? |
|
|
63 |
lambda_max=findLambdaMax(Xsys_MT, p*T_num, ind_MT, size(ind_MT,2)); |
|
|
64 |
%lambda_max1=findLambdaMax(Xsys_MT, p*T_num, ind, size(ind,2)); |
|
|
65 |
if opts.rFlag == 1 |
|
|
66 |
Lambda = Lambda * lambda_max; |
|
|
67 |
opts.rFlag = 0; |
|
|
68 |
end |
|
|
69 |
[Lambdav,Lambda_ind] = sort(Lambda,'descend'); |
|
|
70 |
|
|
|
71 |
|
|
|
72 |
|
|
|
73 |
|
|
|
74 |
% --------- compute the norm of each feature and each submatrix --------- |
|
|
75 |
Xnorm_MT = zeros(size(Xs{1},2)*T_num,1); |
|
|
76 |
idx_row = [0:size(Xs{1},2)-1]*T_num+1; |
|
|
77 |
for idx_t = 1:T_num |
|
|
78 |
Xnorm_MT(idx_row) = (sqrt(sum(Xs{idx_t}.^2,1)))'; |
|
|
79 |
idx_row = idx_row +1; |
|
|
80 |
end |
|
|
81 |
ng_MT = size(ind_MT,2); |
|
|
82 |
Xgnorm_MT = zeros(1,ng_MT); |
|
|
83 |
gind_MT = zeros(d_MT,p*T_num); |
|
|
84 |
if ind_MT(1,1)==-1 |
|
|
85 |
j = 2; |
|
|
86 |
l = 2; |
|
|
87 |
else |
|
|
88 |
l = 1; |
|
|
89 |
j = 1; |
|
|
90 |
end |
|
|
91 |
k = 1; |
|
|
92 |
for i = j : ng_MT-1 |
|
|
93 |
for idx_t = 1: length(Xs) |
|
|
94 |
if(idx_t ==1) |
|
|
95 |
Xgnorm_MT(i) = norm(Xs{idx_t}(:,((ind_MT(1,i)-1)/T_num+1):(ind_MT(2,i)/T_num))); |
|
|
96 |
else |
|
|
97 |
Xgnorm_MT(i)= max(Xgnorm_MT(i),norm(Xs{idx_t}(:,((ind_MT(1,i)-1)/T_num+1):(ind_MT(2,i)/T_num)))); |
|
|
98 |
end |
|
|
99 |
end |
|
|
100 |
gind_MT(l,ind_MT(1,i):ind_MT(2,i)) = k; |
|
|
101 |
k = k + 1; |
|
|
102 |
if ind_MT(2,i)==p*T_num |
|
|
103 |
k = 1; |
|
|
104 |
l = l + 1; |
|
|
105 |
end |
|
|
106 |
end |
|
|
107 |
|
|
|
108 |
% ------- construct sparse matrix to vectorize the computation ---------- |
|
|
109 |
Gind_MT = cell(1,d_MT); |
|
|
110 |
if ind_MT(1,1) == -1 |
|
|
111 |
j = 2; |
|
|
112 |
else |
|
|
113 |
j = 1; |
|
|
114 |
end |
|
|
115 |
for i = j:d_MT |
|
|
116 |
Gind_MT{1,i} = sparse(gind_MT(i,:),1:p*T_num,ones(1,p*T_num),nnl_MT(i),p*T_num); |
|
|
117 |
end |
|
|
118 |
|
|
|
119 |
|
|
|
120 |
|
|
|
121 |
% --------------- put Xgnorm and weights in tree structure --------------- |
|
|
122 |
XgnormTree_MT = zeros(p*T_num,d_MT); |
|
|
123 |
weightTree_MT = zeros(p*T_num,d_MT); |
|
|
124 |
for i = 1:d_MT |
|
|
125 |
if ind_MT(1,1)==-1&&i==1 |
|
|
126 |
XgnormTree_MT(:,i) = Xnorm_MT; |
|
|
127 |
weightTree_MT(:,i) = ind_MT(3,1); |
|
|
128 |
else |
|
|
129 |
G_MT = Gind_MT{1,i}; |
|
|
130 |
XgnormTree_MT(:,i) = G_MT'*(Xgnorm_MT(nnind_MT(i)+1:nnind_MT(i+1)))'; |
|
|
131 |
weightTree_MT(:,i) = G_MT'*(ind_MT(3,nnind_MT(i)+1:nnind_MT(i+1)))'; |
|
|
132 |
end |
|
|
133 |
end |
|
|
134 |
|
|
|
135 |
|
|
|
136 |
|
|
|
137 |
|
|
|
138 |
|
|
|
139 |
% ----------- solve STM sequentially via HFS ------------------ |
|
|
140 |
opts.rFlag = 0; % the input parameters are their true values |
|
|
141 |
|
|
|
142 |
s_MT = zeros(p*T_num,1); |
|
|
143 |
c2_MT = zeros(p*T_num,1); |
|
|
144 |
minn_MT = zeros(p*T_num,1); |
|
|
145 |
|
|
|
146 |
rLambdav = 1./Lambdav; |
|
|
147 |
lambdap = Lambdav(1); |
|
|
148 |
rlambdap = rLambdav(1); |
|
|
149 |
vnormTree_MT = zeros(p*T_num,d_MT); |
|
|
150 |
tol0 = 1e-12; |
|
|
151 |
for i = 1:npar |
|
|
152 |
|
|
|
153 |
%fprintf('in HFS step: %d\n',i); |
|
|
154 |
lambdac = Lambdav(1,i); |
|
|
155 |
rlambdac = rLambdav(1,i); |
|
|
156 |
if lambdac>=lambda_max |
|
|
157 |
ind_zf_MT(:,:,Lambda_ind(i)) = true; |
|
|
158 |
else |
|
|
159 |
starts_screening =tic; |
|
|
160 |
if lambdap==lambda_max |
|
|
161 |
theta_MT = []; |
|
|
162 |
for idx_t = 1: length(ys) |
|
|
163 |
theta_MT = [theta_MT; ys{idx_t}*rlambdap]; |
|
|
164 |
end |
|
|
165 |
|
|
|
166 |
z_MT = Xsys_MT*rlambdap; |
|
|
167 |
[u_MT, v_MT] = Hierarchical_Projection( z_MT, ind_MT, nnind_MT, Gind_MT ); |
|
|
168 |
|
|
|
169 |
if ind_MT(3,end)==0 |
|
|
170 |
weightd_MT = (ind_MT(3,nnind_MT(d_MT)+1:nnind_MT(d_MT+1)))'; |
|
|
171 |
[~,Xmxind_MT] = min(abs(Gind_MT{1,d_MT}*(v_MT(:,d_MT).*v_MT(:,d_MT))-weightd_MT.*weightd_MT)); |
|
|
172 |
idx_column_MT = [ind_MT(1,nnind_MT(d_MT)+Xmxind_MT):ind_MT(2,nnind_MT(d_MT)+Xmxind_MT)]; |
|
|
173 |
nv_MT = []; |
|
|
174 |
idx_column_X = [(idx_column_MT(end)/T_num)-(length(idx_column_MT)/T_num)+1:(idx_column_MT(end)/T_num)]; |
|
|
175 |
for idx_t = 1:length(ys) |
|
|
176 |
idx_column = idx_column_MT(idx_t:T_num:end); |
|
|
177 |
nv_MT = [nv_MT; Xs{idx_t}(:,idx_column_X)*v_MT(idx_column,d_MT)]; |
|
|
178 |
end |
|
|
179 |
else |
|
|
180 |
nv_MT = []; |
|
|
181 |
for idx_t = 1:length(ys) |
|
|
182 |
idx_column = [idx_t:T_num:lenght(v_MT)]; |
|
|
183 |
nv_MT = [nv_MT; Xs{idx_t}*v_MT(idx_column,end)]; |
|
|
184 |
end |
|
|
185 |
end |
|
|
186 |
else |
|
|
187 |
theta_MT = []; |
|
|
188 |
y_all = []; |
|
|
189 |
for idx_t = 1:length(ys) |
|
|
190 |
theta_MT = [theta_MT;(ys{idx_t} - Xs{idx_t}*Sol_MT(:,idx_t,Lambda_ind(i-1)))*rlambdap]; |
|
|
191 |
y_all = [y_all; ys{idx_t}]; |
|
|
192 |
end |
|
|
193 |
nv_MT = y_all*rlambdap-theta_MT; |
|
|
194 |
end |
|
|
195 |
|
|
|
196 |
% ----- estimate the possible region of the dual optimum at lambdac |
|
|
197 |
nv_MT = nv_MT/norm(nv_MT); |
|
|
198 |
%rv = y*rlambdac-theta; |
|
|
199 |
rv_MT = []; |
|
|
200 |
for idx_t = 1:length(ys) |
|
|
201 |
rv_MT = [rv_MT;ys{idx_t}*rlambdac]; |
|
|
202 |
end |
|
|
203 |
rv_MT = rv_MT-theta_MT; |
|
|
204 |
|
|
|
205 |
Prv_MT = rv_MT - (nv_MT'*rv_MT)*nv_MT; |
|
|
206 |
o_MT = theta_MT + 0.5*Prv_MT; |
|
|
207 |
r_MT = 0.5*norm(Prv_MT); |
|
|
208 |
|
|
|
209 |
|
|
|
210 |
|
|
|
211 |
% ----- screening by MLFre, remove the ith feature if T(i)=1 ---- % |
|
|
212 |
c_MT = zeros(p*T_num,1); |
|
|
213 |
idx_row = (0:size(Xs{1},2)-1)*length(Xs)+1; |
|
|
214 |
for idx_t = 1:length(ys) |
|
|
215 |
c_MT(idx_row) = Xs{idx_t}'*o_MT((idx_t-1)*length(ys{1})+1:idx_t*length(ys{1})); |
|
|
216 |
idx_row = idx_row+1; |
|
|
217 |
end |
|
|
218 |
[u_MT, v_MT] = Hierarchical_Projection( c_MT, ind_MT, nnind_MT, Gind_MT ); |
|
|
219 |
v2_MT = v_MT.*v_MT; |
|
|
220 |
for l = 1:d_MT % compute norm of v for each node and arrange them based on the tree structure |
|
|
221 |
if l==1&&ind_MT(1,1)==-1 |
|
|
222 |
vnormTree_MT(:,l) = abs(v_MT(:,l)); |
|
|
223 |
else |
|
|
224 |
G_MT = Gind_MT{1,l}; |
|
|
225 |
vnormTree_MT(:,l)=G_MT'*sqrt(G_MT*v2_MT(:,l)); |
|
|
226 |
end |
|
|
227 |
end |
|
|
228 |
csDifwv_MT = cumsum(weightTree_MT-vnormTree_MT); |
|
|
229 |
|
|
|
230 |
T_MT = false(p*T_num,1); % identify non-leaf inactive nodes |
|
|
231 |
for l = d_MT:-1:2 |
|
|
232 |
Tl_MT = ~T_MT; % find the indices of the remaining features |
|
|
233 |
% case 1 |
|
|
234 |
Tc_MT = false(p*T_num,1); |
|
|
235 |
Tc_MT(Tl_MT) = vnormTree_MT(Tl_MT,l)>tol0; |
|
|
236 |
if nnz(Tc_MT)>0 |
|
|
237 |
s_MT(Tc_MT) = vnormTree_MT(Tc_MT,l)+r_MT*XgnormTree_MT(Tc_MT,l); |
|
|
238 |
end |
|
|
239 |
|
|
|
240 |
% case 2 & 3 |
|
|
241 |
if nnz(Tc_MT)<nnz(Tl_MT) % if not all remaining nodes in level l fall in case 1 |
|
|
242 |
Tcc_MT = false(p*T_num,1); |
|
|
243 |
Tcc_MT(Tl_MT) = ~Tc_MT(Tl_MT); |
|
|
244 |
lind_MT = nnind_MT(l)+1:nnind_MT(l+1); |
|
|
245 |
G_MT = Gind_MT{1,l}; |
|
|
246 |
Tn_MT = G_MT*Tcc_MT==(ind_MT(2,lind_MT)-ind_MT(1,lind_MT)+1)'; |
|
|
247 |
indl_MT = ind_MT(:,lind_MT); |
|
|
248 |
indlr_MT = indl_MT(:,Tn_MT); |
|
|
249 |
for n = 1:nnz(Tn_MT) |
|
|
250 |
minn_MT(n)=min(csDifwv_MT(indlr_MT(1,n):indlr_MT(2,n),l-1)); |
|
|
251 |
end |
|
|
252 |
sdist_MT = (G_MT(Tn_MT,:))'*minn_MT(1:nnz(Tn_MT)); |
|
|
253 |
s_MT(Tcc_MT) = max(0,r_MT*XgnormTree_MT(Tcc_MT,l)-sdist_MT(Tcc_MT)); |
|
|
254 |
end |
|
|
255 |
|
|
|
256 |
ind_zf_MT(Tl_MT,l,Lambda_ind(i))=s_MT(Tl_MT)<weightTree_MT(Tl_MT,l); |
|
|
257 |
T_MT = T_MT|ind_zf_MT(:,l,Lambda_ind(i)); |
|
|
258 |
end |
|
|
259 |
|
|
|
260 |
Tl_MT = ~T_MT; % identify inactive leaf nodes |
|
|
261 |
if ind_MT(1,1)==-1 |
|
|
262 |
s_MT(Tl_MT) = abs(c_MT(Tl_MT))+r_MT*Xnorm_MT(Tl_MT); |
|
|
263 |
ind_zf_MT(Tl_MT,1,Lambda_ind(i))=s_MT(Tl_MT)<ind_MT(3,1); |
|
|
264 |
else |
|
|
265 |
G_MT = Gind_MT{1,1}; |
|
|
266 |
lind_MT = nnind_MT(1)+1:nnind_MT(2); |
|
|
267 |
Tn_MT = G_MT*Tl_MT == (ind_MT(2,lind_MT)-ind_MT(1,lind_MT)+1)'; |
|
|
268 |
c2_MT(Tl_MT) = c_MT(Tl_MT).*c_MT(Tl_MT); |
|
|
269 |
cnorm_MT = (G_MT(Tn_MT,:))'*sqrt(G_MT(Tn_MT,:)*c2_MT); |
|
|
270 |
s_MT(Tl_MT) = cnorm_MT(Tl_MT)+r_MT*XgnormTree_MT(Tl_MT,1); |
|
|
271 |
ind_zf_MT(Tl_MT,1,Lambda_ind(i))=s_MT(Tl_MT)<weightTree_MT(Tl_MT,1); |
|
|
272 |
end |
|
|
273 |
T_MT = T_MT|ind_zf_MT(:,1,Lambda_ind(i)); |
|
|
274 |
|
|
|
275 |
nT_MT = ~T_MT; |
|
|
276 |
|
|
|
277 |
|
|
|
278 |
%Xr = X(:,nT); |
|
|
279 |
nT_MT_X = nT_MT(1:T_num:end); |
|
|
280 |
for idx_t = 1:T_num |
|
|
281 |
Xrs{idx_t} = Xs{idx_t}(:,nT_MT_X); |
|
|
282 |
end |
|
|
283 |
|
|
|
284 |
|
|
|
285 |
|
|
|
286 |
if lambdap == lambda_max |
|
|
287 |
opts.x0 = zeros(nnz(nT_MT_X)*T_num,1); |
|
|
288 |
else |
|
|
289 |
x0_Matrix = Sol_MT(nT_MT_X,:,Lambda_ind(i-1)); |
|
|
290 |
x0_temp =zeros(size(x0_Matrix,1)*T_num,1); |
|
|
291 |
idx_row = [0:size(x0_Matrix,1)-1]*T_num+1; |
|
|
292 |
for idx_t = 1:T_num |
|
|
293 |
x0_temp(idx_row) = x0_Matrix(:,idx_t); |
|
|
294 |
idx_row = idx_row+1; |
|
|
295 |
end |
|
|
296 |
opts.x0 = x0_temp; |
|
|
297 |
end |
|
|
298 |
|
|
|
299 |
% ------------ construct the reduced tree --------------- |
|
|
300 |
Tind_MT = false(ng_MT,1); |
|
|
301 |
nnlr_MT = zeros(1,d_MT+1); |
|
|
302 |
nnlr_MT(end) = 1; |
|
|
303 |
if ind_MT(1,1)==-1 |
|
|
304 |
j=2; |
|
|
305 |
nnlr_MT(1)=nnz(nT_MT); |
|
|
306 |
else |
|
|
307 |
j=1; |
|
|
308 |
end |
|
|
309 |
for l = j:d_MT |
|
|
310 |
lind_MT = nnind_MT(l)+1:nnind_MT(l+1); |
|
|
311 |
Tind_MT(lind_MT) = Gind_MT{1,l}*T_MT==(ind_MT(2,lind_MT)-ind_MT(1,lind_MT)+1)'; |
|
|
312 |
nnlr_MT(l)=nnz(~Tind_MT(lind_MT)); |
|
|
313 |
end |
|
|
314 |
if ind_MT(1,1)==-1 |
|
|
315 |
nnindr_MT=[0,1,cumsum(nnlr_MT(2:end))+1]; |
|
|
316 |
else |
|
|
317 |
nnindr_MT=[0,cumsum(nnlr_MT)]; |
|
|
318 |
end |
|
|
319 |
indr_MT = ind_MT(:,~Tind_MT); |
|
|
320 |
mapinde_MT = cumsum(nT_MT); |
|
|
321 |
mapinds_MT = nnz(nT_MT)+1-cumsum(nT_MT,'reverse'); |
|
|
322 |
for l=j:d_MT+1 |
|
|
323 |
lind_MT = nnindr_MT(l)+1:nnindr_MT(l+1); |
|
|
324 |
oind1_MT = indr_MT(1,lind_MT); |
|
|
325 |
oind2_MT = indr_MT(2,lind_MT); |
|
|
326 |
indr_MT(1,lind_MT) = mapinds_MT(oind1_MT); |
|
|
327 |
indr_MT(2,lind_MT) = mapinde_MT(oind2_MT); |
|
|
328 |
end |
|
|
329 |
|
|
|
330 |
|
|
|
331 |
opts.ind_MT = indr_MT; |
|
|
332 |
% --- solve the STM problem on the reduced data matrix -- % |
|
|
333 |
if opts.tFlag == 2 |
|
|
334 |
opts.tol = funVal(Lambda_ind(i)); |
|
|
335 |
end |
|
|
336 |
tscreen_MT(Lambda_ind(i)) = toc(starts_screening); |
|
|
337 |
|
|
|
338 |
starts = tic; |
|
|
339 |
[x1, ~, ~]= tree_LeastR_MT(Xrs, ys, lambdac, opts); |
|
|
340 |
tsolver_MT(Lambda_ind(i)) = toc(starts); |
|
|
341 |
|
|
|
342 |
nT_MT_temp = nT_MT(1:T_num:end); |
|
|
343 |
idx_row= [1:T_num:length(x1)]; |
|
|
344 |
for idx_t = 1:T_num |
|
|
345 |
Sol_MT(nT_MT_temp,idx_t,Lambda_ind(i)) = x1(idx_row); |
|
|
346 |
idx_row = idx_row +1; |
|
|
347 |
end |
|
|
348 |
end |
|
|
349 |
lambdap = lambdac; |
|
|
350 |
rlambdap = rlambdac; |
|
|
351 |
end |
|
|
352 |
|
|
|
353 |
end |
|
|
354 |
|