[d8e26d]: / SLEP_package_4.1 / SLEP / functions / fusedLasso / teslaLeastLogistic.m

Download this file

431 lines (382 with data), 12.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
function res=teslaLeastLogistic(A, B, y, b, lambda1, lambda2, opts)
%
%%
% Function teslaLeastLogistic:
% Logistic Loss for ...... (to be added)
%
%% Problem
%
% to be added
%% Input parameters:
%
% A- Matrix of size m x n
% (Logistic)
% B- Matrix of size mm x n
% (Least Squares)
% y - Response vector (of size m x 1)
% (for A, discrete, 1, -1)
% b - Response vector (of size mm x 1)
% (real value)
% lambda1 -
% lambda2 -
% opts- Optional inputs (default value: opts=[])
%
%% Output parameters:
% x- The obtained weight of size n x k
% c- The obtained intercept if size 1 x k
% funVal- Function value during iterations
%
%% Related papers
%
% [1] Jun Liu, Lei Yuan, and Jieping Ye, An Efficient Algorithm for
% a Class of Fused Lasso Problems, KDD, 2010.
%
%% Copyright (C) 2009-2010 Jun Liu, and Jieping Ye
%
% You are suggested to first read the Manual.
%
% For any problem, please contact with Jun Liu via j.liu@asu.edu
%
% Last February 5, 2010.
%
% Related functions:
% ....
%%
%% Verify and initialize the parameters
%%
if (nargin <7)
error('\n Inputs: A, B, y, b, lambda1, lambda2, and opts.ind should be specified!\n');
end
[m,n]=size(A);
mm=size(B,1);
if (length(y) ~=m || length(b)~=mm)
error('\n Check the length of y and b!\n');
end
if (lambda1<0 || lambda2 <0)
error('\n lambda1 should be nonnegative!\n');
end
opts=sll_opts(opts); % run sll_opts to set default values (flags)
%% Detailed initialization
%%
% Initialize ind
if ~isfield(opts,'ind1') || ~isfield(opts,'ind2')
error('\n In teslaLeastLogistic, .ind1 and ind2 should be specified');
else
ind1=opts.ind1;
k=length(ind1)-1;
ind2=opts.ind2;
if ind1(k+1)~=m || length(ind2)-1~=k || ind2(k+1)~=mm
error('\n Check opts.ind1, opts.ind2');
end
end
% %% Normalization
%
% % Please refer to sll_opts for the definitions of mu, nu and nFlag
% %
% % If .nFlag =1, the input matrix A is normalized to
% % A= ( A- repmat(mu, m,1) ) * diag(nu)^{-1}
% %
% % If .nFlag =2, the input matrix A is normalized to
% % A= diag(nu)^{-1} * ( A- repmat(mu, m,1) )
% %
% % Such normalization is done implicitly
% % This implicit normalization is suggested for the sparse matrix
% % but not for the dense matrix
% %
%
% if (opts.nFlag~=0)
% if (isfield(opts,'mu'))
% mu=opts.mu;
% if(size(mu,2)~=n)
% error('\n Check the input .mu');
% end
% else
% mu=mean(A,1);
% end
%
% if (opts.nFlag==1)
% if (isfield(opts,'nu'))
% nu=opts.nu;
% if(size(nu,1)~=n)
% error('\n Check the input .nu!');
% end
% else
% nu=(sum(A.^2,1)/m).^(0.5); nu=nu';
% end
% else % .nFlag=2
% if (isfield(opts,'nu'))
% nu=opts.nu;
% if(size(nu,1)~=m)
% error('\n Check the input .nu!');
% end
% else
% nu=(sum(A.^2,2)/n).^(0.5);
% end
% end
%
% ind_zero=find(abs(nu)<= 1e-10); nu(ind_zero)=1;
% % If some values in nu is typically small, it might be that,
% % the entries in a given row or column in A are all close to zero.
% % For numerical stability, we set the corresponding value to 1.
% end
%
% if (~issparse(A)) && (opts.nFlag~=0)
% fprintf('\n -----------------------------------------------------');
% fprintf('\n The data is not sparse or not stored in sparse format');
% fprintf('\n The code still works.');
% fprintf('\n But we suggest you to normalize the data directly,');
% fprintf('\n for achieving better efficiency.');
% fprintf('\n -----------------------------------------------------');
% end
%
% %% Starting point initialization
%
% p_flag=(y==1); % the indices of the postive samples
%
% for i=1:k
% ind_i=(ind(i)+1):ind(i+1); % indices for the i-th group
%
% m1(1,i)=sum(p_flag(ind_i)); % the total number of the positive samples
% m2(1,i)=length(ind_i)-m1(1,i); % the total number of the negative samples
% end
%
% % process the regularization parameter
% if (opts.rFlag==1) % lambda1 here is the scaling factor lying in [0,1]
% if (lambda1<0 || lambda1>1)
% error('\n opts.rFlag=1, and lambda1 should be in [0,1]');
% end
%
% % we compute ATb for computing lambda_max, when the input lambda1 is a ratio
%
% p_flag=(y==1); % the indices of the postive samples
%
% for i=1:k
% ind_i=(ind(i)+1):ind(i+1); % indices for the i-th group
%
% b(ind_i,1)=p_flag(ind_i)*m1(i)/(m1(i)+m2(i))-...
% (~p_flag(ind_i))*m2(i)/(m1(i)+m2(i));
% end
%
% ATb=zeros(n, k);
% % compute AT b
% for i=1:k
% ind_i=(ind(i)+1):ind(i+1); % indices for the i-th group
%
% if (opts.nFlag==0)
% tt =A(ind_i,:)'*b(ind_i,1);
% elseif (opts.nFlag==1)
% tt= A(ind_i,:)'*b(ind_i,1) - sum(b(ind_i,1)) * mu';
% tt=tt./nu(ind_i,1);
% else
% invNu=b(ind_i,1)./nu(ind_i,1);
% tt=A(ind_i,:)'*invNu - sum(invNu)*mu';
% end
%
% ATb(:,i)= tt;
% end
%
% q_bar=Inf;
%
% lambda_max=0;
% for i=1:n
% lambda_max=max(lambda_max,...
% norm( ATb(i,:), q_bar) );
% end
%
% lambda_max=lambda_max / m;
% lambda1=lambda1*lambda_max;
%
% if isfield(opts,'rFlag2')
% if (opts.rFlag2==1)
% lambda2=lambda1*lambda_max;
% end
% end
% end
%
% % initialize a starting point
% if opts.init==2
% x=zeros(n,k); c=zeros(1,k);
% else
% if isfield(opts,'x0')
% x=opts.x0;
% if ( size(x,1)~=n && size(x,2)~=k )
% error('\n Check the input .x0');
% end
% else
% x=zeros(n,k);
% end
%
% if isfield(opts,'c0')
% c=opts.c0;
%
% if ( length(c)~=k )
% error('\n Check the input .c0');
% end
% else
% c=log(m1./m2);
% end
% end
x=zeros(n,k); c=zeros(1,k);
Ax=zeros(m,1); % m x 1
Bx=zeros(mm,1); % mm x 1
% compute Ax: Ax_i= A_i * x_i
for i=1:k
ind_i=(ind1(i)+1):ind1(i+1); % indices for the i-th group
m_i=ind1(i+1)-ind1(i); % number of samples in the i-th group
Ax(ind_i,1)=A(ind_i,:)* x(:,i);
ind_i=(ind2(i)+1):ind2(i+1); % indices for the i-th group
m_i=ind2(i+1)-ind2(i); % number of samples in the i-th group
Bx(ind_i,1)=B(ind_i,:)* x(:,i);
end
%% The main program
% The Armijo Goldstein line search schemes + accelearted gradient descent
z0=zeros(n-1,k);
bFlag=0; % this flag tests whether the gradient step only changes a little
L=1/m; % the intial guess of the Lipschitz continuous gradient
% assign xp with x, and Axp with Ax
xp=x; Axp=Ax; xxp=zeros(n,k);
cp=c; ccp=zeros(1,k);
alphap=0; alpha=1;
for iterStep=1:opts.maxIter
% --------------------------- step 1 ---------------------------
% compute search point s based on xp and x (with beta)
beta=(alphap-1)/alpha; s=x + beta* xxp; sc=c + beta* ccp;
% --------------------------- step 2 ---------------------------
% line search for L and compute the new approximate solution x
% compute the gradient (g) at s
As=Ax + beta* (Ax-Axp);
% aa= - diag(y) * (A * s + sc)
vec_sc=zeros(m,1);
for i=1:k
ind_i=(ind(i)+1):ind(i+1); % indices for the i-th group
vec_sc(ind_i,1)=sc(i);
end
aa=- y.*(As+ vec_sc);
% fun_s is the logistic loss at the search point
bb=max(aa,0);
fun_s= sum(sum ( log( exp(-bb) + exp(aa-bb) ) + bb ) ) / m;
% compute prob=[p_1;p_2;...;p_m]
prob=1./( 1+ exp(aa) );
% b= - diag(y) * (1 - prob)
b= -y.*(1-prob) / m;
gc=zeros(1,k); % the gradient of c
for i=1:k
ind_i=(ind(i)+1):ind(i+1); % indices for the i-th group
gc(1,k)=sum(b(ind_i));
end
% compute g= AT b, the gradient of x
for i=1:k
ind_i=(ind(i)+1):ind(i+1); % indices for the i-th group
if (opts.nFlag==0)
tt =A(ind_i,:)'*b(ind_i,1);
elseif (opts.nFlag==1)
tt= A(ind_i,:)'*b(ind_i,1) - sum(b(ind_i,1)) * mu';
tt=tt./nu(ind_i,1);
else
invNu=b(ind_i,1)./nu(ind_i,1);
tt=A(ind_i,:)'*invNu - sum(invNu)*mu';
end
g(:,i)= tt;
end
% copy x and Ax to xp and Axp
xp=x; Axp=Ax;
cp=c;
while (1)
% let s walk in a step in the antigradient of s to get v
% and then do the Lq/L1-norm regularized projection
v=s-g/L; c= sc- gc/L;
[x, z, gap]=tesla_proj(v, z0, ...
lambda1/L, lambda2/L, n, k,...
1000, 1e-8, 1, 6);
z0=z;
v=x-s; % the difference between the new approximate solution x
% and the search point s
% compute Ax: Ax_i= A_i * x_i
for i=1:k
ind_i=(ind(i)+1):ind(i+1); % indices for the i-th group
m_i=ind(i+1)-ind(i); % number of samples in the i-th group
if (opts.nFlag==0)
Ax(ind_i,1)=A(ind_i,:)* x(:,i);
elseif (opts.nFlag==1)
invNu=x(:,i)./nu; mu_invNu=mu * invNu;
Ax(ind_i,1)=A(ind_i,:)*invNu -repmat(mu_invNu, m_i, 1);
else
Ax(ind_i,1)=A(ind_i,:)*x(:,i)-repmat(mu*x(:,i), m, 1);
Ax(ind_i,1)=Ax./nu(ind_i,1);
end
end
% aa= - diag(y) * (A * x + c)
vec_sc=zeros(m,1);
for i=1:k
ind_i=(ind(i)+1):ind(i+1); % indices for the i-th group
vec_sc(ind_i,1)=c(i);
end
aa=- y.*(Ax+ vec_sc);
% fun_s is the logistic loss at the search point
bb=max(aa,0);
fun_x= sum(sum ( log( exp(-bb) + exp(aa-bb) ) + bb ) ) / m;
r_sum=(norm(v,'fro')^2 + norm(c-sc,2)^2) / 2;
l_sum=fun_x - fun_s - sum(sum(v.* g)) - (c-sc)* gc';
if (r_sum <=1e-20)
bFlag=1; % this shows that, the gradient step makes little improvement
break;
end
% the condition is fun_x <= fun_s + <v, g> + <c ,gc>
% + L/2 * (<v,v> + <c-sc,c-sc> )
if(l_sum <= r_sum * L)
break;
else
L=max(2*L, l_sum/r_sum);
% fprintf('\n L=%5.6f',L);
end
end
% --------------------------- step 3 ---------------------------
% update alpha and alphap, and check whether converge
alphap=alpha; alpha= (1+ sqrt(4*alpha*alpha +1))/2;
ValueL(iterStep)=L;
xxp=x-xp; ccp=c-cp;
funVal(iterStep)=fun_x;
funVal(iterStep)=funVal(iterStep)+ lambda1 * sum(abs(x(:))) + lambda2 * sum( sum( abs(x(:,1:(k-1)) - x(:,2:k) ) ) );
if (bFlag)
% fprintf('\n The program terminates as the gradient step changes the solution very small.');
break;
end
switch(opts.tFlag)
case 0
if iterStep>=2
if (abs( funVal(iterStep) - funVal(iterStep-1) ) <= opts.tol)
break;
end
end
case 1
if iterStep>=2
if (abs( funVal(iterStep) - funVal(iterStep-1) ) <=...
opts.tol* funVal(iterStep-1))
break;
end
end
case 2
if ( funVal(iterStep)<= opts.tol)
break;
end
case 3
norm_xxp=sqrt(xxp'*xxp);
if ( norm_xxp <=opts.tol)
break;
end
case 4
norm_xp=sqrt(xp'*xp); norm_xxp=sqrt(xxp'*xxp);
if ( norm_xxp <=opts.tol * max(norm_xp,1))
break;
end
case 5
if iterStep>=opts.maxIter
break;
end
end
res.gap(:,iterStep)=gap;
end
res.x=x;
res.c=c;
res.funVal=funVal;
res.ValueL=ValueL;