Download this file

1874 lines (1336 with data), 41.2 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <mex.h>
#include <math.h>
#include "matrix.h"
#define delta 1e-10
/*
Revision History
First Version available on October 10, 2009
A runnable version on October 15, 2009
Major revision on October 29, 2009
(Some functions appearing in a previous version have deleted, please refer to the previous version for the old functions.
Some new functions have been added as well)
*/
/*
Files contained in this header file sfa.h:
1. Algorithms for solving the linear system A A^T z0 = Av (see the description of A from the following context)
void Thomas(double *zMax, double *z0,
double * Av, int nn)
void Rose(double *zMax, double *z0,
double * Av, int nn)
int supportSet(double *x, double *v, double *z,
double *g, int * S, double lambda, int nn)
void dualityGap(double *gap, double *z,
double *g, double *s, double *Av,
double lambda, int nn)
void dualityGap2(double *gap, double *z,
double *g, double *s, double *Av,
double lambda, int nn)
2. The Subgraident Finding Algorithm (SFA) for solving problem (4) (refer to the description of the problem for detail)
int sfa(double *x, double *gap,
double *z, double *z0, double * v, double * Av,
double lambda, int nn, int maxStep,
double *s, double *g,
double tol, int tau, int flag)
int sfa_special(double *x, double *gap,
double *z, double * v, double * Av,
double lambda, int nn, int maxStep,
double *s, double *g,
double tol, int tau)
int sfa_one(double *x, double *gap,
double *z, double * v, double * Av,
double lambda, int nn, int maxStep,
double *s, double *g,
double tol, int tau)
*/
/*
Some mathematical background.
In this file, we discuss how to solve the following subproblem,
min_x 1/2 \|x-v\|^2 + lambda \|A x\|_1, (1)
which is a key problem used in the Fused Lasso Signal Approximator (FLSA).
Also, note that, FLSA is a building block for solving the optimation problmes with fused Lasso penalty.
In (1), x and v are n-dimensional vectors,
and A is a matrix with size (n-1) x n, and is defined as follows (e.g., n=4):
A= [ -1 1 0 0;
0 -1 1 0;
0 0 -1 1]
The above problem can be reformulated as the following equivalent min-max optimization problem
min_x max_z 1/2 \|x-v\|^2 + <A x, z>
subject to \|z\|_{infty} \leq lambda (2)
It is easy to get that, at the optimal point
x = v - AT z, (3)
where z is the optimal solution to the following optimization problem
min_z 1/2 z^T A AT z - < z, A v>,
subject to \|z\|_{infty} \leq lambda (4)
Let B=A A^T. It is easy to get that B is a (n-1) x (n-1) tridiagonal matrix.
When n=5, B is defined as:
B= [ 2 -1 0 0;
-1 2 -1 0;
0 -1 2 -1;
0 0 -1 2]
Let z0 be the solution to the linear system:
A A^T * z0 = A * v (5)
The problem (5) can be solve by the Thomas Algorithm, in about 5n multiplications and 4n additions.
It can also be solved by the Rose's Algorithm, in about 2n multiplications and 2n additions.
Moreover, considering the special structure of the matrix A (and B),
it can be solved in about n multiplications and 3n additions
If lambda \geq \|z0\|_{infty}, x_i= mean(v), for all i,
the problem (1) admits near analytical solution
We have also added the restart technique, please refer to our paper for detail!
*/
/*
/////////////// Solving the Linear System via Thomas's Algorithm \\\\\\\\\\\\\\\\\\
*/
void Thomas(double *zMax, double *z0, double * Av, int nn){
/*
We apply the Tomas algorithm for solving the following linear system
B * z0 = Av
Thomas algorithm is also called the tridiagonal matrix algorithm
B=[ 2 -1 0 0;
-1 2 -1 0;
0 -1 2 -1;
0 0 -1 2]
z0 is the result, Av is unchanged after the computation
c is a precomputed nn dimensional vector
c=[-1/2, -2/3, -3/4, -4/5, ..., -nn/(nn+1)]
c[i]=- (i+1) / (i+2)
c[i-1]=- i / (i+1)
z0 is an nn dimensional vector
*/
int i;
double tt, z_max;
/*
Modify the coefficients in Av (copy to z0)
*/
z0[0]=Av[0]/2;
for (i=1;i < nn; i++){
tt=Av[i] + z0[i-1];
z0[i]=tt - tt / (i+2);
}
/*z0[i]=(Av[i] + z0[i-1]) * (i+1) / (i+2);*/
/*z0[i]=(Av[i] + z0[i-1])/ ( 2 - i / (i+1));*/
/*
Back substitute (obtain the result in z0)
*/
z_max= fabs(z0[nn-1]);
for (i=nn-2; i>=0; i--){
z0[i]+= z0[i+1] - z0[i+1]/ (i+2);
/*z0[i]+= z0[i+1] * (i+1) / (i+2);*/
tt=fabs(z0[i]);
if (tt > z_max)
z_max=tt;
}
*zMax=z_max;
}
/*
/////////////// Solving the Linear System via Rose's Algorithm \\\\\\\\\\\\\\\\\\
*/
void Rose(double *zMax, double *z0, double * Av, int nn){
/*
We use the Rose algorithm for solving the following linear system
B * z0 = Av
B=[ 2 -1 0 0;
-1 2 -1 0;
0 -1 2 -1;
0 0 -1 2]
z0 is the result, Av is unchanged after the computation
z0 is an nn dimensional vector
*/
int i, m;
double s=0, z_max;
/*
We follow the style in CLAPACK
*/
m= nn % 5;
if (m!=0){
for (i=0;i<m; i++)
s+=Av[i] * (i+1);
}
for(i=m;i<nn;i+=5)
s+= Av[i] * (i+1)
+ Av[i+1] * (i+2)
+ Av[i+2] * (i+3)
+ Av[i+3] * (i+4)
+ Av[i+4] * (i+5);
s/=(nn+1);
/*
from nn-1 to 0
*/
z0[nn-1]=Av[nn-1]- s;
for (i=nn-2;i >=0; i--){
z0[i]=Av[i] + z0[i+1];
}
/*
from 0 to nn-1
*/
z_max= fabs(z0[0]);
for (i=0; i<nn; i++){
z0[i]+= z0[i-1];
s=fabs(z0[i]);
if (s > z_max)
z_max=s;
}
*zMax=z_max;
}
/*
//////////////// compute x for restarting \\\\\\\\\\\\\\\\\\\\\\\\\
x=omega(z)
v: the vector to be projected
z: the approximate solution
g: the gradient at z (g should be computed before calling this function
nn: the length of z, g, and S (maximal length for S)
n: the length of x and v
S: records the indices of the elements in the support set
*/
int supportSet(double *x, double *v, double *z, double *g, int * S, double lambda, int nn){
int i, j, n=nn+1, numS=0;
double temp;
/*
we first scan z and g to obtain the support set S
*/
/*numS: number of the elements in the support set S*/
for(i=0;i<nn; i++){
if ( ( (z[i]==lambda) && (g[i] < delta) ) || ( (z[i]==-lambda) && (g[i] >delta) )){
S[numS]=i;
numS++;
}
}
/*
printf("\n %d",numS);
*/
if (numS==0){ /*this shows that S is empty*/
temp=0;
for (i=0;i<n;i++)
temp+=v[i];
temp=temp/n;
for(i=0;i<n;i++)
x[i]=temp;
return numS;
}
/*
Next, we deal with numS >=1
*/
/*process the first block
j=0
*/
temp=0;
for (i=0;i<=S[0]; i++)
temp+=v[i];
/*temp =sum (v [0: s[0] ]*/
temp=( temp + z[ S[0] ] ) / (S[0] +1);
for (i=0;i<=S[0]; i++)
x[i]=temp;
/*process the middle blocks
If numS=1, it belongs the last block
*/
for (j=1; j < numS; j++){
temp=0;
for (i= S[j-1] +1; i<= S[j]; i++){
temp+=v[i];
}
/*temp =sum (v [ S[j-1] +1: s[j] ]*/
temp=(temp - z[ S[j-1] ] + z[ S[j] ])/ (S[j]- S[j-1]);
for (i= S[j-1] +1; i<= S[j]; i++){
x[i]=temp;
}
}
/*process the last block
j=numS-1;
*/
temp=0;
for (i=S[numS-1] +1 ;i< n; i++)
temp+=v[i];
/*temp =sum (v [ (S[numS-1] +1): (n-1) ]*/
temp=( temp - z[ S[numS-1] ] ) / (nn - S[numS-1]); /*S[numS-1] <= nn-1*/
for (i=S[numS-1] +1 ;i< n; i++)
x[i]=temp;
return numS;
}
/*
//////////// Computing the duality gap \\\\\\\\\\\\\\\\\\\\\\\\\\
we compute the duality corresponding the solution z
z: the approximate solution
g: the gradient at z (we recompute the gradient)
s: an auxiliary variable
Av: A*v
nn: the lenght for z, g, s, and Av
The variables g and s shall be revised.
The variables z and Av remain unchanged.
*/
void dualityGap(double *gap, double *z, double *g, double *s, double *Av, double lambda, int nn){
int i, m;
double temp;
g[0]=z[0] + z[0] - z[1] - Av[0];
for (i=1;i<nn-1;i++){
g[i]= - z[i-1] + z[i] + z[i] - z[i+1] - Av[i];
}
g[nn-1]= -z[nn-2] + z[nn-1] + z[nn-1] - Av[nn-1];
for (i=0;i<nn;i++)
if (g[i]>0)
s[i]=lambda + z[i];
else
s[i]=-lambda + z[i];
temp=0;
m=nn%5;
if (m!=0){
for(i=0;i<m;i++)
temp+=s[i]*g[i];
}
for(i=m;i<nn;i+=5)
temp=temp + s[i] *g[i]
+ s[i+1]*g[i+1]
+ s[i+2]*g[i+2]
+ s[i+3]*g[i+3]
+ s[i+4]*g[i+4];
*gap=temp;
}
/*
Similar to dualityGap,
The difference is that, we assume that g has been computed.
*/
void dualityGap2(double *gap, double *z, double *g, double *s, double *Av, double lambda, int nn){
int i, m;
double temp;
/*
g[0]=z[0] + z[0] - z[1] - Av[0];
for (i=1;i<nn-1;i++){
g[i]= - z[i-1] + z[i] + z[i] - z[i+1] - Av[i];
}
g[nn-1]= -z[nn-2] + z[nn-1] + z[nn-1] - Av[nn-1];
*/
for (i=0;i<nn;i++)
if (g[i]>0)
s[i]=lambda + z[i];
else
s[i]=-lambda + z[i];
temp=0;
m=nn%5;
if (m!=0){
for(i=0;i<m;i++)
temp+=s[i]*g[i];
}
for(i=m;i<nn;i+=5)
temp=temp + s[i] *g[i]
+ s[i+1]*g[i+1]
+ s[i+2]*g[i+2]
+ s[i+3]*g[i+3]
+ s[i+4]*g[i+4];
*gap=temp;
}
/*
generateSolution:
generate the solution x based on the information of z and g
(!!!!we assume that g has been computed as the gradient of z!!!!)
*/
int generateSolution(double *x, double *z, double *gap,
double *v, double *Av,
double *g, double *s, int *S,
double lambda, int nn){
int i, m, numS, n=nn+1;
double temp, funVal1, funVal2;
/*
z is the appropriate solution,
and g contains its gradient
*/
/*
We assume that n>=3, and thus nn>=2
We have two ways for recovering x.
The first way is x = v - A^T z
The second way is x =omega(z)
*/
temp=0;
m=nn%5;
if (m!=0){
for (i=0;i<m;i++)
temp+=z[i]*(g[i] + Av[i]);
}
for (i=m;i<nn;i+=5)
temp=temp + z[i] *(g[i] + Av[i])
+ z[i+1]*(g[i+1] + Av[i+1])
+ z[i+2]*(g[i+2] + Av[i+2])
+ z[i+3]*(g[i+3] + Av[i+3])
+ z[i+4]*(g[i+4] + Av[i+4]);
funVal1=temp /2;
temp=0;
m=nn%5;
if (m!=0){
for (i=0;i<m;i++)
temp+=fabs(g[i]);
}
for (i=m;i<nn;i+=5)
temp=temp + fabs(g[i])
+ fabs(g[i+1])
+ fabs(g[i+2])
+ fabs(g[i+3])
+ fabs(g[i+4]);
funVal1=funVal1+ temp*lambda;
/*
we compute the solution by the second way
*/
numS= supportSet(x, v, z, g, S, lambda, nn);
/*
we compute the objective function of x computed in the second way
*/
temp=0;
m=n%5;
if (m!=0){
for (i=0;i<m;i++)
temp+=(x[i]-v[i]) * (x[i]-v[i]);
}
for (i=m;i<n;i+=5)
temp=temp + (x[i]- v[i]) * ( x[i]- v[i])
+ (x[i+1]-v[i+1]) * (x[i+1]-v[i+1])
+ (x[i+2]-v[i+2]) * (x[i+2]-v[i+2])
+ (x[i+3]-v[i+3]) * (x[i+3]-v[i+3])
+ (x[i+4]-v[i+4]) * (x[i+4]-v[i+4]);
funVal2=temp/2;
temp=0;
m=nn%5;
if (m!=0){
for (i=0;i<m;i++)
temp+=fabs( x[i+1]-x[i] );
}
for (i=m;i<nn;i+=5)
temp=temp + fabs( x[i+1]-x[i] )
+ fabs( x[i+2]-x[i+1] )
+ fabs( x[i+3]-x[i+2] )
+ fabs( x[i+4]-x[i+3] )
+ fabs( x[i+5]-x[i+4] );
funVal2=funVal2 + lambda * temp;
/*
printf("\n funVal1=%e, funVal2=%e, diff=%e\n", funVal1, funVal2, funVal1-funVal2);
*/
if (funVal2 > funVal1){ /*
we compute the solution by the first way
*/
x[0]=v[0] + z[0];
for(i=1;i<n-1;i++)
x[i]= v[i] - z[i-1] + z[i];
x[n-1]=v[n-1] - z[n-2];
}
else{
/*
the solution x is computed in the second way
the gap can be further reduced
(note that, there might be numerical error)
*/
*gap=*gap - (funVal1- funVal2);
if (*gap <0)
*gap=0;
}
return (numS);
}
void restartMapping(double *g, double *z, double * v,
double lambda, int nn)
{
int i, n=nn+1;
double temp;
int* S=(int *) malloc(sizeof(int)*nn);
double *x=(double *)malloc(sizeof(double)*n);
double *s=(double *)malloc(sizeof(double)*nn);
double *Av=(double *)malloc(sizeof(double)*nn);
int numS=-1;
/*
for a given input z,
we compute the z0 after restarting
The elements in z lie in [-lambda, lambda]
The returned value is g
*/
for (i=0;i<nn; i++)
Av[i]=v[i+1]-v[i];
g[0]=z[0] + z[0] - z[1] - Av[0];
for (i=1;i<nn-1;i++){
g[i]= - z[i-1] + z[i] + z[i] - z[i+1] - Av[i];
}
g[nn-1]= -z[nn-2] + z[nn-1] + z[nn-1] - Av[nn-1];
numS = supportSet(x, v, z, g, S, lambda, nn);
/*With x, we compute z via
AA^T z = Av - Ax
*/
/*
compute s= Av -Ax
*/
for (i=0;i<nn; i++)
s[i]=Av[i] - x[i+1] + x[i];
/*
Apply Rose Algorithm for solving z
*/
Thomas(&temp, g, s, nn);
/*
Rose(&temp, g, s, nn);
*/
/*
project g to [-lambda, lambda]
*/
for(i=0;i<nn;i++){
if (g[i]>lambda)
g[i]=lambda;
else
if (g[i]<-lambda)
g[i]=-lambda;
}
free (S);
free (x);
free (s);
free (Av);
}
/*
/////////////////////////////////////// Explanation for the function sfa \\\\\\\\\\\\\\\\\\\\\\\\\\\\
Our objective is to solve the fused Lasso signal approximator (flsa) problem:
min_x g(x) 1/2 \|x-v\|^2 + lambda \|A x\|_1, (1)
Let x* be the solution (which is unique), it satisfies
0 in x* - v + A^T * lambda *SGN(Ax*) (2)
To solve x*, it suffices to find
y* in A^T * lambda *SGN(Ax*) (3)
that satisfies
x* - v + y* =0 (4)
which leads to
x*= v - y* (5)
Due to the uniqueness of x*, we conclude that y* is unique.
As y* is a subgradient of lambda \|A x*\|_1,
we name our method as Subgradient Finding Algorithm (sfa).
y* in (3) can be further written as
y*= A^T * z* (6)
where
z* in lambda* SGN (Ax*) (7)
From (6), we have
z* = (A A^T)^{-1} A * y* (8)
Therefore, from the uqniueness of y*, we conclude that z* is also unique.
Next, we discuss how to solve this unique z*.
The problem (1) can reformulated as the following equivalent problem:
min_x max_z f(x, z)= 1/2 \|x-v\|^2 + <A x, z>
subject to \|z\|_{infty} \leq lambda (9)
At the saddle point, we have
x = v - AT z, (10)
which somehow concides with (5) and (6)
Plugging (10) into (9), we obtain the problem
min_z 1/2 z^T A AT z - < z, A v>,
subject to \|z\|_{infty} \leq lambda, (11)
In this program, we apply the Nesterov's method for solving (11).
Duality gap:
At a given point z0, we compute x0= v - A^T z0.
It is easy to show that
min_x f(x, z0) = f(x0, z0) <= max_z f(x0, z) (12)
Moreover, we have
max_z f(x0, z) - min_x f(x, z0)
<= lambda * \|A x0\|_1 - < z0, Av - A A^T z0> (13)
It is also to get that
f(x0, z0) <= f(x*, z*) <= max_z f(x0, z) (14)
g(x*)=f(x*, z*) (15)
g(x0)=max_z f(x0, z) (17)
Therefore, we have
g(x0)-g(x*) <= lambda * \|A x0\|_1 - < z0, Av - A A^T z0> (18)
We have applied a restarting technique, which is quite involved; and thus, we do not explain here.
/////////////////////////////////////// Explanation for the function sfa \\\\\\\\\\\\\\\\\\\\\\\\\\\\
*/
/*
//////////// sfa \\\\\\\\\\\\\\\\\\\\\
For sfa, the stepsize of the Nesterov's method is fixed to 1/4, so that no line search is needed.
Explanation of the parameters:
Output parameters
x: the solution to the primal problem
gap: the duality gap (pointer)
Input parameters
z: the solution to the dual problem (before calling this function, z contains a starting point)
!!!!we assume that the starting point has been successfully initialized in z !!!!
z0: a variable used for multiple purposes:
1) the previous solution z0
2) the difference between z and z0, i.e., z0=z- z0
lambda: the regularization parameter (and the radius of the infity ball, see (11)).
nn: the length of z, z0, Av, g, and s
maxStep: the maximal number of iterations
v: the point to be projected (not changed after the program)
Av: A*v (not changed after the program)
s: the search point (used for multiple purposes)
g: the gradient at g (and it is also used for multiple purposes)
tol: the tolerance of the gap
tau: the duality gap or the restarting technique is done every tau steps
flag: if flag=1, we apply the resart technique
flag=2, just run the SFA algorithm, terminate it when the absolution change is less than tol
flag=3, just run the SFA algorithm, terminate it when the duality gap is less than tol
flag=4, just run the SFA algorithm, terminate it when the relative duality gap is less than tol
We would like to emphasis that the following assumptions
have been checked in the functions that call this function:
1) 0< lambda < z_max
2) nn >=2
3) z has been initialized with a starting point
4) z0 has been initialized with all zeros
The termination condition is checked every tau iterations.
For the duality gap, please refer to (12-18)
*/
int sfa(double *x, double *gap, int * activeS,
double *z, double *z0, double * v, double * Av,
double lambda, int nn, int maxStep,
double *s, double *g,
double tol, int tau, int flag){
int i, iterStep, m, tFlag=0, n=nn+1;
double alphap=0, alpha=1, beta=0, temp;
int* S=(int *) malloc(sizeof(int)*nn);
double gapp=-1, gappp=-1; /*gapp denotes the previous gap*/
int numS=-1, numSp=-2, numSpp=-3;;
/*
numS denotes the number of elements in the Support Set S
numSp denotes the number of elements in the previous Support Set S
*/
*gap=-1; /*initial a value -1*/
/*
The main algorithm by Nesterov's method
B is an nn x nn tridiagonal matrix.
The nn eigenvalues of B are 2- 2 cos (i * PI/ n), i=1, 2, ..., nn
*/
for (iterStep=1; iterStep<=maxStep; iterStep++){
/*------------- Step 1 ---------------------*/
beta=(alphap -1 ) / alpha;
/*
compute search point
s= z + beta * z0
We follow the style of CLAPACK
*/
m=nn % 5;
if (m!=0){
for (i=0;i<m; i++)
s[i]=z[i]+ beta* z0[i];
}
for (i=m;i<nn;i+=5){
s[i] =z[i] + beta* z0[i];
s[i+1] =z[i+1] + beta* z0[i+1];
s[i+2] =z[i+2] + beta* z0[i+2];
s[i+3] =z[i+3] + beta* z0[i+3];
s[i+4] =z[i+4] + beta* z0[i+4];
}
/*
s and g are of size nn x 1
compute the gradient at s
g= B * s - Av,
where B is an nn x nn tridiagonal matrix. and is defined as
B= [ 2 -1 0 0;
-1 2 -1 0;
0 -1 2 -1;
0 0 -1 2]
We assume n>=3, which leads to nn>=2
*/
g[0]=s[0] + s[0] - s[1] - Av[0];
for (i=1;i<nn-1;i++){
g[i]= - s[i-1] + s[i] + s[i] - s[i+1] - Av[i];
}
g[nn-1]= -s[nn-2] + s[nn-1] + s[nn-1] - Av[nn-1];
/*
z0 stores the previous -z
*/
m=nn%7;
if (m!=0){
for (i=0;i<m;i++)
z0[i]=-z[i];
}
for (i=m; i <nn; i+=7){
z0[i] = - z[i];
z0[i+1] = - z[i+1];
z0[i+2] = - z[i+2];
z0[i+3] = - z[i+3];
z0[i+4] = - z[i+4];
z0[i+5] = - z[i+5];
z0[i+6] = - z[i+6];
}
/*
do a gradient step based on s to get z
*/
m=nn%5;
if (m!=0){
for(i=0;i<m; i++)
z[i]=s[i] - g[i]/4;
}
for (i=m;i<nn; i+=5){
z[i] = s[i] - g[i] /4;
z[i+1] = s[i+1] - g[i+1]/4;
z[i+2] = s[i+2] - g[i+2]/4;
z[i+3] = s[i+3] - g[i+3]/4;
z[i+4] = s[i+4] - g[i+4]/4;
}
/*
project z onto the L_{infty} ball with radius lambda
z is the new approximate solution
*/
for (i=0;i<nn; i++){
if (z[i]>lambda)
z[i]=lambda;
else
if (z[i]<-lambda)
z[i]=-lambda;
}
/*
compute the difference between the new solution
and the previous solution (stored in z0=-z_p)
the difference is written to z0
*/
m=nn%5;
if (m!=0){
for (i=0;i<m;i++)
z0[i]+=z[i];
}
for(i=m;i<nn; i+=5){
z0[i] +=z[i];
z0[i+1]+=z[i+1];
z0[i+2]+=z[i+2];
z0[i+3]+=z[i+3];
z0[i+4]+=z[i+4];
}
alphap=alpha;
alpha=(1+sqrt(4*alpha*alpha+1))/2;
/*
check the termination condition
*/
if (iterStep%tau==0){
/*
The variables g and s can be modified
The variables x, z0 and z can be revised for case 0, but not for the rest
*/
switch (flag){
case 1:
/*
terminate the program once the "duality gap" is smaller than tol
compute the duality gap:
x= v - A^T z
Ax = Av - A A^T z = -g,
where
g = A A^T z - A v
the duality gap= lambda * \|Ax\|-1 - <z, Ax>
= lambda * \|g\|_1 + <z, g>
In fact, gap=0 indicates that,
if g_i >0, then z_i=-lambda
if g_i <0, then z_i=lambda
*/
gappp=gapp;
gapp=*gap; /*record the previous gap*/
numSpp=numSp;
numSp=numS; /*record the previous numS*/
dualityGap(gap, z, g, s, Av, lambda, nn);
/*g is computed as the gradient of z in this function*/
/*
printf("\n Iteration: %d, gap=%e, numS=%d", iterStep, *gap, numS);
*/
/*
If *gap <=tol, we terminate the iteration
Otherwise, we restart the algorithm
*/
if (*gap <=tol){
tFlag=1;
break;
} /* end of *gap <=tol */
else{
/* we apply the restarting technique*/
/*
we compute the solution by the second way
*/
numS = supportSet(x, v, z, g, S, lambda, nn);
/*g, the gradient of z should be computed before calling this function*/
/*With x, we compute z via
AA^T z = Av - Ax
*/
/*
printf("\n iterStep=%d, numS=%d, gap=%e",iterStep, numS, *gap);
*/
m=1;
if (nn > 1000000)
m=10;
else
if (nn > 100000)
m=5;
if ( abs(numS-numSp) < m){
numS=generateSolution(x, z, gap, v, Av,
g, s, S, lambda, nn);
/*g, the gradient of z should be computed before calling this function*/
if (*gap <tol){
tFlag=2; /*tFlag =2 shows that the result is already optimal
There is no need to call generateSolution for recomputing the best solution
*/
break;
}
if ( (*gap ==gappp) && (numS==numSpp) ){
tFlag=2;
break;
}
/*we terminate the program is *gap <1
numS==numSP
and gapp==*gap
*/
}
/*
compute s= Av -Ax
*/
for (i=0;i<nn; i++)
s[i]=Av[i] - x[i+1] + x[i];
/*
apply Rose Algorithm for solving z
*/
Thomas(&temp, z, s, nn);
/*
Rose(&temp, z, s, nn);
*/
/*
printf("\n Iteration: %d, %e", iterStep, temp);
*/
/*
project z to [-lambda2, lambda2]
*/
for(i=0;i<nn;i++){
if (z[i]>lambda)
z[i]=lambda;
else
if (z[i]<-lambda)
z[i]=-lambda;
}
m=nn%7;
if (m!=0){
for (i=0;i<m;i++)
z0[i]=0;
}
for (i=m; i<nn; i+=7){
z0[i] = z0[i+1]
= z0[i+2]
= z0[i+3]
= z0[i+4]
= z0[i+5]
= z0[i+6]
=0;
}
alphap=0; alpha=1;
/*
we restart the algorithm
*/
}
break; /*break case 1*/
case 2:
/*
The program is terminated either the summation of the absolution change (denoted by z0)
of z (from the previous zp) is less than tol * nn,
or the maximal number of iteration (maxStep) is achieved
Note: tol indeed measures the averaged per element change.
*/
temp=0;
m=nn%5;
if (m!=0){
for(i=0;i<m;i++)
temp+=fabs(z0[i]);
}
for(i=m;i<nn;i+=5)
temp=temp + fabs(z0[i])
+ fabs(z0[i+1])
+ fabs(z0[i+2])
+ fabs(z0[i+3])
+ fabs(z0[i+4]);
*gap=temp / nn;
if (*gap <=tol){
tFlag=1;
}
break;
case 3:
/*
terminate the program once the "duality gap" is smaller than tol
compute the duality gap:
x= v - A^T z
Ax = Av - A A^T z = -g,
where
g = A A^T z - A v
the duality gap= lambda * \|Ax\|-1 - <z, Ax>
= lambda * \|g\|_1 + <z, g>
In fact, gap=0 indicates that,
if g_i >0, then z_i=-lambda
if g_i <0, then z_i=lambda
*/
g[0]=z[0] + z[0] - z[1] - Av[0];
for (i=1;i<nn-1;i++){
g[i]= - z[i-1] + z[i] + z[i] - z[i+1] - Av[i];
}
g[nn-1]= -z[nn-2] + z[nn-1] + z[nn-1] - Av[nn-1];
for (i=0;i<nn;i++)
if (g[i]>0)
s[i]=lambda + z[i];
else
s[i]=-lambda + z[i];
temp=0;
m=nn%5;
if (m!=0){
for(i=0;i<m;i++)
temp+=s[i]*g[i];
}
for(i=m;i<nn;i+=5)
temp=temp + s[i] *g[i]
+ s[i+1]*g[i+1]
+ s[i+2]*g[i+2]
+ s[i+3]*g[i+3]
+ s[i+4]*g[i+4];
*gap=temp;
/*
printf("\n %e", *gap);
*/
if (*gap <=tol)
tFlag=1;
break;
case 4:
/*
terminate the program once the "relative duality gap" is smaller than tol
compute the duality gap:
x= v - A^T z
Ax = Av - A A^T z = -g,
where
g = A A^T z - A v
the duality gap= lambda * \|Ax\|-1 - <z, Ax>
= lambda * \|g\|_1 + <z, g>
In fact, gap=0 indicates that,
if g_i >0, then z_i=-lambda
if g_i <0, then z_i=lambda
Here, the "relative duality gap" is defined as:
duality gap / - 1/2 \|A^T z\|^2 + < z, Av>
We efficiently compute - 1/2 \|A^T z\|^2 + < z, Av> using the following relationship
- 1/2 \|A^T z\|^2 + < z, Av>
= -1/2 <z, A A^T z - Av -Av>
= -1/2 <z, g - Av>
*/
g[0]=z[0] + z[0] - z[1] - Av[0];
for (i=1;i<nn-1;i++){
g[i]= - z[i-1] + z[i] + z[i] - z[i+1] - Av[i];
}
g[nn-1]= -z[nn-2] + z[nn-1] + z[nn-1] - Av[nn-1];
for (i=0;i<nn;i++)
if (g[i]>0)
s[i]=lambda + z[i];
else
s[i]=-lambda + z[i];
temp=0;
m=nn%5;
if (m!=0){
for(i=0;i<m;i++)
temp+=s[i]*g[i];
}
for(i=m;i<nn;i+=5)
temp=temp + s[i] *g[i]
+ s[i+1]*g[i+1]
+ s[i+2]*g[i+2]
+ s[i+3]*g[i+3]
+ s[i+4]*g[i+4];
*gap=temp;
/*
Now, *gap contains the duality gap
Next, we compute
- 1/2 \|A^T z\|^2 + < z, Av>
=-1/2 <z, g - Av>
*/
temp=0;
m=nn%5;
if (m!=0){
for(i=0;i<m;i++)
temp+=z[i] * (g[i] - Av[i]);
}
for(i=m;i<nn;i+=5)
temp=temp + z[i] * (g[i] - Av[i])
+ z[i+1]* (g[i+1]- Av[i+1])
+ z[i+2]* (g[i+2]- Av[i+2])
+ z[i+3]* (g[i+3]- Av[i+3])
+ z[i+4]* (g[i+4]- Av[i+4]);
temp=fabs(temp) /2;
if (temp <1)
temp=1;
*gap/=temp;
/*
*gap now contains the relative gap
*/
if (*gap <=tol){
tFlag=1;
}
break;
default:
/*
The program is terminated either the summation of the absolution change (denoted by z0)
of z (from the previous zp) is less than tol * nn,
or the maximal number of iteration (maxStep) is achieved
Note: tol indeed measures the averaged per element change.
*/
temp=0;
m=nn%5;
if (m!=0){
for(i=0;i<m;i++)
temp+=fabs(z0[i]);
}
for(i=m;i<nn;i+=5)
temp=temp + fabs(z0[i])
+ fabs(z0[i+1])
+ fabs(z0[i+2])
+ fabs(z0[i+3])
+ fabs(z0[i+4]);
*gap=temp / nn;
if (*gap <=tol){
tFlag=1;
}
break;
}/*end of switch*/
if (tFlag)
break;
}/* end of the if for checking the termination condition */
/*-------------- Step 3 --------------------*/
}
/*
for the other cases, except flag=1, compute the solution x according the first way (the primal-dual way)
*/
if ( (flag !=1) || (tFlag==0) ){
x[0]=v[0] + z[0];
for(i=1;i<n-1;i++)
x[i]= v[i] - z[i-1] + z[i];
x[n-1]=v[n-1] - z[n-2];
}
if ( (flag==1) && (tFlag==1)){
/*
We assume that n>=3, and thus nn>=2
We have two ways for recovering x.
The first way is x = v - A^T z
The second way is x =omega(z)
*/
/*
We first compute the objective function value of the first choice in terms f(x), see our paper
*/
/*
for numerical reason, we do a gradient descent step
*/
/*
---------------------------------------------------
A gradient step begins
*/
g[0]=z[0] + z[0] - z[1] - Av[0];
for (i=1;i<nn-1;i++){
g[i]= - z[i-1] + z[i] + z[i] - z[i+1] - Av[i];
}
g[nn-1]= -z[nn-2] + z[nn-1] + z[nn-1] - Av[nn-1];
/*
do a gradient step based on z to get the new z
*/
m=nn%5;
if (m!=0){
for(i=0;i<m; i++)
z[i]=z[i] - g[i]/4;
}
for (i=m;i<nn; i+=5){
z[i] = z[i] - g[i] /4;
z[i+1] = z[i+1] - g[i+1]/4;
z[i+2] = z[i+2] - g[i+2]/4;
z[i+3] = z[i+3] - g[i+3]/4;
z[i+4] = z[i+4] - g[i+4]/4;
}
/*
project z onto the L_{infty} ball with radius lambda
z is the new approximate solution
*/
for (i=0;i<nn; i++){
if (z[i]>lambda)
z[i]=lambda;
else
if (z[i]<-lambda)
z[i]=-lambda;
}
/*
---------------------------------------------------
A gradient descent step ends
*/
/*compute the gradient at z*/
g[0]=z[0] + z[0] - z[1] - Av[0];
for (i=1;i<nn-1;i++){
g[i]= - z[i-1] + z[i] + z[i] - z[i+1] - Av[i];
}
g[nn-1]= -z[nn-2] + z[nn-1] + z[nn-1] - Av[nn-1];
numS=generateSolution(x, z, gap, v, Av,
g, s, S, lambda, nn);
/*g, the gradient of z should be computed before calling this function*/
}
free (S);
/*
free the variables S
*/
*activeS=numS;
return (iterStep);
}
/*
Refer to sfa for the defintions of the variables
In this file, we restart the program every step, and neglect the gradient step.
It seems that, this program does not converge.
This function shows that the gradient step is necessary.
*/
int sfa_special(double *x, double *gap, int * activeS,
double *z, double * v, double * Av,
double lambda, int nn, int maxStep,
double *s, double *g,
double tol, int tau){
int i, iterStep, tFlag=0, n=nn+1;
double temp;
int* S=(int *) malloc(sizeof(int)*nn);
double gapp=-1; /*gapp denotes the previous gap*/
int numS=-1, numSp=-1;
/*
numS denotes the number of elements in the Support Set S
numSp denotes the number of elements in the previous Support Set S
*/
*gap=-1; /*initialize *gap a value*/
for (iterStep=1; iterStep<=maxStep; iterStep++){
g[0]=z[0] + z[0] - z[1] - Av[0];
for (i=1;i<nn-1;i++){
g[i]= - z[i-1] + z[i] + z[i] - z[i+1] - Av[i];
}
g[nn-1]= -z[nn-2] + z[nn-1] + z[nn-1] - Av[nn-1];
numSp=numS; /*record the previous numS*/
numS = supportSet(x, v, z, g, S, lambda, nn);
/*With x, we compute z via
AA^T z = Av - Ax
*/
/*
compute s= Av -Ax
*/
for (i=0;i<nn; i++)
s[i]=Av[i] - x[i+1] + x[i];
/*
Apply Rose Algorithm for solving z
*/
Thomas(&temp, z, s, nn);
/*
Rose(&temp, z, s, nn);
*/
/*
project z to [-lambda, lambda]
*/
for(i=0;i<nn;i++){
if (z[i]>lambda)
z[i]=lambda;
else
if (z[i]<-lambda)
z[i]=-lambda;
}
if (iterStep%tau==0){
gapp=*gap; /*record the previous gap*/
dualityGap(gap, z, g, s, Av, lambda, nn);
/*
printf("\n iterStep=%d, numS=%d, gap=%e, diff=%e",iterStep, numS, *gap, *gap -gapp);
*/
if (*gap <=tol){
tFlag=1;
break;
}
if ( (*gap <1) && (numS==numSp) && fabs(gapp == *gap) ){
tFlag=1;
break;
/*we terminate the program is *gap <1
numS==numSP
and gapp==*gap
*/
}
}/*end of if tau*/
}/*end for */
free (S);
* activeS=numS;
return(iterStep);
}
/*
We do one gradient descent, and then restart the program
*/
int sfa_one(double *x, double *gap, int * activeS,
double *z, double * v, double * Av,
double lambda, int nn, int maxStep,
double *s, double *g,
double tol, int tau){
int i, iterStep, m, tFlag=0, n=nn+1;
double temp;
int* S=(int *) malloc(sizeof(int)*nn);
double gapp=-1, gappp=-2; /*gapp denotes the previous gap*/
int numS=-100, numSp=-200, numSpp=-300;
/*
numS denotes the number of elements in the Support Set S
numSp denotes the number of elements in the previous Support Set S
*/
*gap=-1; /*initialize *gap a value*/
/*
The main algorithm by Nesterov's method
B is an nn x nn tridiagonal matrix.
The nn eigenvalues of B are 2- 2 cos (i * PI/ n), i=1, 2, ..., nn
*/
/*
we first do a gradient step based on z
*/
/*
---------------------------------------------------
A gradient step begins
*/
g[0]=z[0] + z[0] - z[1] - Av[0];
for (i=1;i<nn-1;i++){
g[i]= - z[i-1] + z[i] + z[i] - z[i+1] - Av[i];
}
g[nn-1]= -z[nn-2] + z[nn-1] + z[nn-1] - Av[nn-1];
/*
do a gradient step based on z to get the new z
*/
m=nn%5;
if (m!=0){
for(i=0;i<m; i++)
z[i]=z[i] - g[i]/4;
}
for (i=m;i<nn; i+=5){
z[i] = z[i] - g[i] /4;
z[i+1] = z[i+1] - g[i+1]/4;
z[i+2] = z[i+2] - g[i+2]/4;
z[i+3] = z[i+3] - g[i+3]/4;
z[i+4] = z[i+4] - g[i+4]/4;
}
/*
project z onto the L_{infty} ball with radius lambda
z is the new approximate solution
*/
for (i=0;i<nn; i++){
if (z[i]>lambda)
z[i]=lambda;
else
if (z[i]<-lambda)
z[i]=-lambda;
}
/*
---------------------------------------------------
A gradient descent step ends
*/
/*compute the gradient at z*/
g[0]=z[0] + z[0] - z[1] - Av[0];
for (i=1;i<nn-1;i++){
g[i]= - z[i-1] + z[i] + z[i] - z[i+1] - Av[i];
}
g[nn-1]= -z[nn-2] + z[nn-1] + z[nn-1] - Av[nn-1];
for (iterStep=1; iterStep<=maxStep; iterStep++){
/*
---------------------------------------------------
restart the algorithm with x=omega(z)
*/
numSpp=numSp;
numSp=numS; /*record the previous numS*/
numS = supportSet(x, v, z, g, S, lambda, nn);
/*With x, we compute z via
AA^T z = Av - Ax
*/
/*
compute s= Av -Ax
*/
for (i=0;i<nn; i++)
s[i]=Av[i] - x[i+1] + x[i];
/*
Apply Rose Algorithm for solving z
*/
Thomas(&temp, z, s, nn);
/*
Rose(&temp, z, s, nn);
*/
/*
project z to [-lambda, lambda]
*/
for(i=0;i<nn;i++){
if (z[i]>lambda)
z[i]=lambda;
else
if (z[i]<-lambda)
z[i]=-lambda;
}
/*
---------------------------------------------------
restart the algorithm with x=omega(z)
we have computed a new z, based on the above relationship
*/
/*
---------------------------------------------------
A gradient step begins
*/
g[0]=z[0] + z[0] - z[1] - Av[0];
for (i=1;i<nn-1;i++){
g[i]= - z[i-1] + z[i] + z[i] - z[i+1] - Av[i];
}
g[nn-1]= -z[nn-2] + z[nn-1] + z[nn-1] - Av[nn-1];
/*
do a gradient step based on z to get the new z
*/
m=nn%5;
if (m!=0){
for(i=0;i<m; i++)
z[i]=z[i] - g[i]/4;
}
for (i=m;i<nn; i+=5){
z[i] = z[i] - g[i] /4;
z[i+1] = z[i+1] - g[i+1]/4;
z[i+2] = z[i+2] - g[i+2]/4;
z[i+3] = z[i+3] - g[i+3]/4;
z[i+4] = z[i+4] - g[i+4]/4;
}
/*
project z onto the L_{infty} ball with radius lambda
z is the new approximate solution
*/
for (i=0;i<nn; i++){
if (z[i]>lambda)
z[i]=lambda;
else
if (z[i]<-lambda)
z[i]=-lambda;
}
/*
---------------------------------------------------
A gradient descent step ends
*/
/*compute the gradient at z*/
g[0]=z[0] + z[0] - z[1] - Av[0];
for (i=1;i<nn-1;i++){
g[i]= - z[i-1] + z[i] + z[i] - z[i+1] - Av[i];
}
g[nn-1]= -z[nn-2] + z[nn-1] + z[nn-1] - Av[nn-1];
if (iterStep % tau==0){
gappp=gapp;
gapp=*gap; /*record the previous gap*/
dualityGap2(gap, z, g, s, Av, lambda, nn);
/*g, the gradient of z should be computed before calling this function*/
/*
printf("\n iterStep=%d, numS=%d, gap=%e",iterStep, numS, *gap);
*/
/*
printf("\n %d & %d & %2.0e \\\\ \n \\hline ",iterStep, numS, *gap);
*/
/*
printf("\n %e",*gap);
*/
/*
printf("\n %d",numS);
*/
if (*gap <=tol){
tFlag=1;
break;
}
m=1;
if (nn > 1000000)
m=5;
else
if (nn > 100000)
m=3;
if ( abs( numS-numSp) <m ){
/*
printf("\n numS=%d, numSp=%d",numS,numSp);
*/
m=generateSolution(x, z, gap, v, Av,
g, s, S, lambda, nn);
/*g, the gradient of z should be computed before calling this function*/
if (*gap < tol){
numS=m;
tFlag=2;
break;
}
if ( (*gap ==gappp) && (numS==numSpp) ){
tFlag=2;
break;
}
} /*end of if*/
}/*end of if tau*/
} /*end of for*/
if (tFlag!=2){
numS=generateSolution(x, z, gap, v, Av, g, s, S, lambda, nn);
/*g, the gradient of z should be computed before calling this function*/
}
free(S);
*activeS=numS;
return(iterStep);
}